• Increase font size
  • Default font size
  • Decrease font size

vol. 13, no. 1,2017

FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION

The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of  the  gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to  MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t  determine the load distribution in a dynamic state for the selected kinematic pairs.

USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY

The paper presents evaluation of modal analysis usefulness for determination of milling process stability. In the first phase of the study experimental modal analysis was performed and using CutPro 9.5 software, stability lobes were generated. In the next step, machining tests were carried out. The last stage of the experiment involved verification of modal analysis usefulness for evaluation of milling process stability based on surface roughness measurements. Conducted research allowed to state that modal analysis can be a useful tool for determining milling process stability.

CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS

The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of  the  gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to  MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t  determine the load distribution in a dynamic state for the selected kinematic pairs.

CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD

The paper presents results of numerical FEM analyses of the process of broaching the groove using the Explicit module of the ABAQUS program. The impact of the blade geometry was presented and of the selected technological parameters of processing when cutting the aluminium EN-AW 6061-T6 alloy on the load of the broach blade during its operation. This article shows influence of value of rake and clearance angle onto deformations of the tool’s cutting edge in the transverse direction. An interaction between broach blade shape and reduced stress in the area of cutting edge was presented. The optimum geometry of the cutting tool was proposed.

Page 1 of 2

  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  Next 
  •  End 
  • »