multi-criteria optimization, Pareto efficiency, vehicle routing problem, artificial immune system

Bogna MRÓWCZYŃSKA

COMPARISON OF PARETO EFFICIENCY AND WEIGHTED OBJECTIVES METHOD TO SOLVE THE MULTI-CRITERIA VEHICLE ROUTING PROBLEM USING THE ARTIFICIAL IMMUNE SYSTEM

Abstract

The solutions to the multi-criteria vehicle routing problem, dependent on route length and travelling time of delivery van, are presented in the paper. This type of problem is known as a traveling salesman problem. The artificial immune system is used to solve it in this article. Since there are two variables – route length and travelling time – two methods are employed. They are: Weighted Objectives Method and Pareto Efficiency Method. The results of calculation are compared.

1. INTRODUCTION

A major challenge in the distribution of goods is finding the optimal vehicle routes. Most often optimization seeks to minimize the number of kilometers, which primarily are translated into fuel and maintenance costs. Travelling time is also important because of drivers’ wages, quick and timely delivery of goods to the customer, and consequently it affects customer satisfaction. The emissions, which recently have become more stringent, rely on such parameters as the age of vehicles, route length and individual driving styles. Optimization of vehicle routes is dependent on many variables. This paper presents how to optimize delivery schedule from one warehouse to multiple vendors.

* Silesian University of Technology, Faculty of Transport, Krasińskiego 8, 40-019 Katowice, Poland, e-mail: bogna.mrowczynska@polsl.pl
The controlled variables are: distribution of goods to a specified number of locations using one delivery van in one day. For such a scenario calculations were made using both methods.

2. TASK FORMULATION

From a mathematical standpoint, the travelling salesman problem is to find the shortest route that passes through each of a set of points.

To solve the traveling salesman problem, one of the known methods can be used. The solution offered by the construction of the Hamilton cycles in the graph representing the network of roads and finding the best one is possible only for small graphs. Therefore, the other methods are used. The branch and bound method is very popular and recently supported by artificial intelligence methods (Karaoglan et al., 2011). The genetic or evolutionary algorithms (Król, 2017), k-means methods (Ambroziak & Jachimowski, 2012), neighborhood search (Kytojokia et al., 2007) and others heuristic methods are applied successfully. However, this approach uses artificial immune system. Optimization, which simultaneously takes into account the roadway and time is important for route delivery planning with varying traffic patterns. In this case, the travel time is a nonlinear function of the road and it should be taken into account as the independent variable.

There are many methods of multi-criteria optimization (Kovács & Bóna, 2009). Presented calculations use two different approaches to find the solution to the problem of multiple-criteria: weighted objectives method and Pareto efficiency.

2.1. Weighted Objectives Method

Weighted objectives method is used often to solve multi-criteria problems. In the case of minimizing road and travel times optimization criteria can be expressed in the following objective function:

\[f: D \subseteq N^m \rightarrow R \]

where: \(D = \{x=(n_1, n_2, \ldots, n_m): \forall i \in N, i \leq m \land n_i \in N\} \) – an acceptable set of all possible routes being held by m points of receipt of goods, \(R \) – a set of real values of objective function.
In the method of the weighted objectives the functions expressing the criteria are linked using weighted coefficients as follows:

\[f: (n_1, n_2, \ldots, n_m) \rightarrow w_1f_1 + w_2f_2 + \ldots + w_nf_n \]

(2)

where:
- \(f_i \) – criteria, \(i = 1, \ldots, n \),
- \(n \) – number of criteria,
- \(w_i \) – weighted coefficients; \(i = 1, \ldots, n \); often it assumes that

\[\sum_{i=0}^{n} w_i = 1 \]

(3)

As a result, multi-criteria task is reduced to one-criteria, which can be solved by the methods used to optimize one objective function.

In the case where the minimization of the road is the first criterion, and a travel time is a second, the objective function has the following equation:

\[f = w_1 \frac{d_{0i} + \sum_{k=1}^{m} d_{i/k+1} + d_{i0}}{d_{\text{max}}} + w_2 \frac{t_{0i} + \sum_{k=1}^{m} t_{i/k+1} + t_{i0}}{t_{\text{max}}} \]

(4)

where:
- \(m \) – number of delivery points,
- \(0 \) – warehouse,
- \(\{i_1, i_2, \ldots, i_m\} \) – a sequence of points in the order of service,
- \(d_{ij} \) – the shortest distance form \(i \)-th point to \(j \)-th point,
- \(t_{ij} \) – the shortest travel time form \(i \)-th point to \(j \)-th point,
- \(w_1, w_2 \) – weight coefficients,
- \(d_{\text{max}} \) – the maximum route length estimated in advance,
- \(t_{\text{max}} \) – the maximum travel time estimated in advance.

In the weighted objectives method, the selection of appropriate weight coefficients may be of a problem since manipulating them is subjective. It calls for assigning a dominant criteria in a situation where all of them are equal.

2.2. Pareto efficiency

Pareto efficiency is the other method of solving the problem. It is frequently used in applications of genetic and evolutionary algorithms. The models described in (Goldberg, 1989) were followed to perform calculations presented in this paper.
Pareto optimality is a state where the improvement of one criterion has a negative impact on another one. In the case of minimization, a solution not dominated is defined as:

\[f^* = (f_1, \ldots, f_m): \quad \forall i \in \mathbb{N}, f_i^* \leq f_i \land \exists j \in \mathbb{N}, f_j^* < f_j \]

which means that the function \(f \) is dominated by \(f^* \) (\(f^* \prec f \)).

A set of non-dominated solutions is called the Pareto front. The best solution is selected from the Pareto front. In the case of minimizing road and travel time optimization criteria can be expressed in the following objective function:

\[f: \mathbb{D} \subset \mathbb{N}^m \rightarrow \mathbb{R}^2 \]

where the meanings are as in formula (1). To put it differently an objective function is the following mapping of:

\[f: (n_1, n_2, \ldots, n_m) \rightarrow (s, t) \]

where:
- \(s \) – the distance between the pickup points in the order given,
- \(t \) – the time needed to cover the selected option.

In terms of numerical solutions, pairs are searched \((s^*, t^*)\) such as

\[\forall (s, t) \in \mathbb{R}^2 \exists s^* \in \mathbb{R}: s^* \leq s \lor \exists t^* \in \mathbb{R}: t^* \leq t \land (s, t) \neq (s^*, t^*) \]

3. NUMERICAL MODEL

3.1. Clonal Selection

In this model artificial immune system has been utilised to designate routes for deliveries.

The artificial immune system is one of the methods of artificial intelligence which has been inspired by the human immune system (Wierzchoń, 2001). This network is activated when foreign antigens invading an organism have overcome the body's mechanical barriers such as the skin, mucus membranes, and the cornea.

When antigens get into the bloodstream they are captured by antibodies. In order to remove antigens, first they must be physically immobilized. This involves the reshaping of the antibody to bind to the antigen. Then antibodies are mutated. These antibodies, which are best matched to the antigen, are abundantly cloned and with the blood penetrate throughout the body in search of the enemy.
Captured antigens are destroyed, but the way in which this takes place is no longer essential for the numerical model. When antigens do not threaten the body any longer, the antibody population is suppressed. The patterns to diagnose the next attack are stored in the body. This simplified model of recognition of antigen presented here is called a clonal selection and it is a paradigm of clonal selection of artificial immune system.

3.2. Artificial Immune System

Numerical algorithm imitating the clonal selection can be described by first defining:
- antigen – the optimum solution for the task,
- antibody – an approximate solution,
- affinity – measure of fitting an antibody to the antigen – the value of the objective function for a given solution,
- population of antibodies – a finite set of different solutions,
- cloning – copying existing solutions,
- mutating – mapping \(M: (n_1, n_2, \ldots, n_m) \rightarrow (n_{1j}, n_{2j}, \ldots, n_{mj}) \), which changes the order of selected points \(n_i \).

The steps of the algorithm are as follows: at first, the random population of antibodies is generated and an affinity of antibodies is evaluated. Next the best fitted antibodies are cloned and mutated. Each mutated antibody is evaluated. The best antibodies pass to the next generation. The rest is eliminated in the process of suppression. Everything is repeated until the condition to stop the calculation. A flowchart of clonal selection is shown in Figure 1.

The evaluation of the affinity, important in this algorithm, depends on the accepted criterion. The route length and the travel time are determined for each solution in every method of optimization. These parameters are substituted into the formula (3) in weighted objectives method for calculating the affinity.

The affinity rating in the case of Pareto optimal solutions requires consideration of some steps of the algorithm (Figure 1) of the substeps as described in Figure 2.
1. In the entire population of antibodies all individuals not dominated are searched (Pareto front) and the highest rank is assigned to them.
2. In a subpopulation consisting of the remaining antibodies another Pareto front is determined and antibodies from it receive a lower rank.
3. The substep 2 is repeated until each antibody from the population receives a rank.
4. Antibodies are subjected to cloning. Number of clones is directly proportional to the rank of the antibodies.
5. In the process of the suppression, the antibodies are eliminated sequentially starting from the lowest ranks.

Fig. 2. Clonal selection algorithm – Pareto optimality (own study)
4. CALCULATION

The calculations of Pareto optimality was made using komi_pareto01i.exe (Figure 3).

Fig. 3. The window of komi_pareto01i.exe with the end results (own study)

Komiwojazer08i.exe was used for calculations by the weighted objectives method (Figure 4).

Fig. 4. The window of Komiwojazer08i.exe with the end results (own study)
Komi_pareto01i.exe and komiwojazer08i.exe are own implementations of Artificial Immune System in C++.

As already mentioned, the purpose of the calculation is to obtain the shortest route and the quickest time of delivery from a warehouse to customers. On a selected day the warehouse is required to deliver goods to 49 recipients using one van. There is no time limit. The shortest distance and travel time between collection points are available. Table 1 shows the distance and transit times.

Tab. 1. The distance and transit times for each edge of the graph (own study)

<table>
<thead>
<tr>
<th>No. edge</th>
<th>The beginning of the edge</th>
<th>The end of the edge</th>
<th>Distance [km]</th>
<th>Travel time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,8</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>3,3</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>3,3</td>
<td>35</td>
</tr>
</tbody>
</table>

The calculation results for the method of weighted criteria, and for Pareto optimality are listed in Table 2. Despite using coefficients in a function (3) which according to the experience of the author were well matched, the results of Pareto optimal solution are much better. As you can see the both solutions of weighted objectives method are dominated by solutions of Pareto efficiency method. Both solutions of Pareto optimality do not dominate each other. In the first solution, the road is shorter than in the other one, and in a second travel time is less than in the first solution.
Tab. 2. The best results of the calculation (own study)

<table>
<thead>
<tr>
<th>Method</th>
<th>Pareto Efficiency</th>
<th>Objectives</th>
<th>route length</th>
<th>travel time [s]</th>
<th>The sequence of points in the order of service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted Objectives</td>
<td>150.2</td>
<td>16305</td>
<td>0 43 44 7 9 8 21 22 23 1 2</td>
<td>3 4 34 38 45 49 47 46 48 42 35 41 40 36 39 37 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>147.8</td>
<td>15235</td>
<td>24 12 11 28 29 32 33 31 30 27 26 40 36 35 41 7 0</td>
<td>34 38 45 49 47 46 48 42 10 13 14 15 5 6 37 39 25</td>
<td></td>
</tr>
<tr>
<td>Pareto Efficiency</td>
<td>129</td>
<td>13729</td>
<td>0 44 7 1 8 9 21 23 22 19 20 18 17 16 32 33 31</td>
<td>30 29 28 13 14 15 10 2 3 4 34 38 5 6 11 12 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>127.5</td>
<td>13736</td>
<td>27 24 25 40 41 35 36 39 37 45 42 48 49 47 46 43 0</td>
<td>30 29 28 13 14 15 10 2 3 4 34 38 5 6 11 12 26</td>
<td></td>
</tr>
</tbody>
</table>

The solution to the problem using each of the methods has been achieved in a similar, very short computational time. It can therefore be expected that the use of Pareto optimality in further calculations will give good results too.

5. CONCLUSIONS

The Pareto optimality method used to plan the shortest and fastest route of the delivery van is effective and as fast as the method of weighted factors. Pareto optimal solutions are better than those obtained with the weighted objectives method, despite using the coefficients that have been tested in this type of calculation.

The chosen example is a simplified fragment of a larger, more complex, with restrictions on the delivery time and takes into account the varying intensity of movement. Results of calculations encourage the author to use the Pareto optimality method to solve this bigger example and in further studies.

REFERENCES

