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Abstract 

The capacity to navigate effectively in complex environments is a crucial prerequisite 

for mobile robots. In this study, the YOLOv5 model is utilized to identify objects to aid 

the mobile robot in determining movement conditions. However, the limitation of deep 

learning models being trained on insufficient data, leading to inaccurate recognition 

in unforeseen scenarios, is addressed by introducing an innovative computer vision 

technology that detects lanes in real-time. Combining the deep learning model with 

computer vision technology, the robot can identify different types of objects, allowing 

it to estimate distance and adjust speed accordingly. Additionally, the paper 

investigates the recognition reliability in varying light intensities. When the light 

illumination increases from 300 lux to 1000 lux, the reliability of the recognition model 

on different objects also improves, from about 75% to 98%, respectively. The findings 

of this study offer promising directions for future breakthroughs in mobile robot 

navigation. 

1. INTRODUCTION  

A mobile robot consists of a chassis, or body, that houses the robot's hardware 

components. The chassis is typically designed to be sturdy, lightweight, and capable of 

accommodating various sensors and actuators. In addition, the software of a mobile robot 

encompasses the algorithms, control systems, and operating systems that enable it to 

function. The cameras also play a very important role; they provide visual perception and 

enable the robot to gather information about its environment. Thus, vision-based mobile 

robot navigation includes the design of robots, cameras, object recognition algorithms, and 

control systems. Intelligent mobile robots must possess the ability to navigate in complex 

environments. The field of mobile robot navigation is continuously evolving, with various 

technologies being developed. The development of intelligent robots capable of autonomous 

navigation in unknown environments is the primary focus of mobile robot navigation. It is  

a multidisciplinary field that combines techniques and technologies from robotics (Hichri  

et al., 2021; Nguyen & Vu, 2022; Thuan et al., 2023), computer vision (Marroquín et al., 

2023), machine learning (Geng et al., 2018; Xiao et al., 2022), and control theory (Ren  

et al., 2022; Shang et al., 2021). The ultimate objective of mobile robot navigation research 
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is to create automated systems that can operate safely and efficiently in real-world 

environments, performing tasks such as exploration, surveillance, delivery, and transportation. 

This field has gained significant attention from researchers in recent years, with numerous 

studies focused on advancing mobile robot navigation techniques. A novel navigation model 

was proposed in the article, which not only establishes two-way communication between the 

cerebellum and basal ganglia but also allows for their co-development (Wang et al., 2020). 

This approach enabled the agent to autonomously develop its intelligence through hybrid 

learning techniques. An artificial potential field (APF) with brain signals through a brain-

robot interface (BRI)-based control strategy, in conjunction with simultaneous localization 

and mapping (SLAM) techniques was developed in the study (Liu et al., 2020). This 

combination enabled the establishment of a relationship between the strength of EEG signals 

and the intensity of the potential field, facilitating the navigation and control of a mobile 

robot in uncertain environments. The framework for self-improving lifelong learning 

designed for a mobile robot was introduced in the research (Liu et al., 2021). This method 

could enable agents to operate in various environments. The approach for guiding mobile 

robots was proposed by (Ajeil et al., 2020). The core of this approach was based on 

hybridizing the Particle Swarm Optimization with the Modified Frequency Bat algorithm. 

The researchers in (Iqbal et al., 2020) discussed a mobile field robot that operates on a 

Robotic Operating System (ROS) and is capable of simultaneously navigating through 

occluded crop rows while performing various phenotyping tasks. The authors in (Gharajeh 

et al., 2020) proposed a method for collision-free navigation of autonomous mobile robots 

using a hybrid GPS-ANFIS approach. In the study (Ran et al., 2021), the authors developed 

a Convolutional Neural Network that exhibited superior scene classification accuracy and 

efficiency in processing monocular images. The research from Lagaza et al. (Lagaza, 

Kashyap, & Pandey, 2020) has identified navigation algorithms that can efficiently address 

path optimization challenges while minimizing the required time. Ehab Al Khatib et al. 

(Khatib et al., 2020) have identified navigation algorithms that can efficiently address path 

optimization challenges while minimizing the required time. A novel approach integrated 

with a knowledge-based neural fuzzy controller (KNFC) was proposed to control the 

navigation of mobile robots in the study (Chen et al., 2021). The authors in (Chen et al., 

2021) proposed a multivariable, event-triggered, generalized super-twisting sliding-mode 

algorithm for the safe navigation of nonholonomic mobile robots in unknown indoor 

environments. The authors in (Wang et al., 2021) focused on the autonomous navigation of 

a wheeled mobile robot in a dynamic environment, utilizing a 3D point cloud map and the 

Creative Mechanism Design Methodology. 

Inspired by the research mentioned, this paper proposes a detection framework for mobile 

robot navigation based on computer vision and deep learning. To be more detailed, a 

segmentation algorithm is designed to extract the information of movement lane for the 

robot. After that, the YOLOv5 network (Luo et. al, 2021) is built up and integrated 

automatically on the robot controller. Hence, the robot could detect and cluster the necessary 

information for navigation process. The experimental results indicate the working 

performance of the proposed method under different circumstances. 

The rest of the content of this paper is included as follows: The next section illustrates 

the detailed structure of the proposed approach. In the third section, the experimental results 

are conducted and analyzed via different scenarios. Finally, the conclusion is drawn up in 

depth in Section 4. 



 

84 
 

2. THE PROPOSED METHOD  

In general, the proposed method is designed based on the following criteria: the ability 

to identify lanes; the ability to detect different groups of objects and control reactions 

corresponding to them; and the ability to modify instantaneous speed. The sub-sections 

below analyze in depth all the mentioned criteria. 

2.1. Lane detection algorithm  

To determine the movement line for the robot model, a real-time image processing system is 

designed as shown in Fig. 1. There are six steps in total of this procedure. To begin with, the 

system takes the images extracted from cameras mounted at the front of the robot model. After 

that, the system determines the color threshold of the lane and calibrates the precision lane by 

reducing noise on the binary images. To be more specific, histogram equalization is used to 

eliminate the outline pixels from the photos, and then a morphological filter is employed for Hole 

Filling process (Cho et al., 2022). The latency for the computing phase after taking the photo and 

sending data to the drives is estimated at 1 seconds on average. 

 

Fig. 1. The lane detection algorithm 
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Fig. 2. The pre-processing region of the lane images 

As a result, the region for the robot motion is clearly separated from the input images as 

shown in Fig. 2. In the next step, the contours of the binary images are taken out to get an idea 

of how much the lanes curve. The average steering angle for the robot is used to figure out the 

value of the lane curvature. Also, in order to conserve computing resources for the processor, the 

authors severely reduce the required movement lanes on the image region. While evaluating the 

road's curve, the algorithm simply examines the curvature immediately in front of the robot 

model. So, the binary images are now cropped to a new image and limited by the orange circle 

dot that can be seen in Fig. 3. 

 

Fig. 3. The principle of extracting images to the processing area 

The mesh of lane curvature is established by aiding the method of summing pixels. As 

indicated in Fig. 4, the lane curvature included the pixels with a value of 255. All pixels of 

this type on the left and right sides of the y-axis, which are separated by the red line, are 

summarized. Thus, the yellow boundaries are drawn to display the lane for the robot to move 

in. 

 

Fig. 4. The lane curvature visualized by pixel values 
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However, when the robot runs through roadways with varying curves and intricacy, the 

numbers of pixels to the left and right of the y-axis are different. For instance, in the case of 

turning left, the pixels on the left are obviously greater than those on the right. The only case 

where the number of pixels is evenly distributed in both directions is when the robot is running 

straight.  

 

   

Fig. 5. The lane with yellow dot instructions 

For the purpose of ensuring the continuity and the precision of the robot moving decision 

every time step, the signal for the DC motor is unified and depicted by the yellow point as shown 

in Fig. 5. As the lane bends to the right, the yellow dot deviates to the right; when going in  

a straight line, the yellow dot is centered on the screen. The final results of lane determination 

are presented in Fig. 6. 

 

 

Fig. 6. The final results of lane determination 

2.2. Object Detection by Applying YOLOv5 Network 

In this study, a YOLOv5 network is designed to detect several types of objects: static 

objects (traffic lights, speed indicators) and dynamic objects (human target). The detailed 

structure of the proposed model is illustrated in Fig. 7. There are 1200 images captured in 

total for the mentioned target groups. These obtained data sets are then imported and split 

for training the YOLOv5 model at the default ratios: seven parts of the data size for the 

training phase and three parts of the data size for the evaluation phase. 

The architecture of the YOLOv5 network is composed of three main components: the 

Backbone, the Neck and the Head. To be more specific, the Backbone is combined between 

the Cross Stage Partial (H. Lin, & J. Yang, 2022) and the Darknet53 network (Wang et al., 

2020). The purpose of this combination is for the Cross Stage Partial to address the redundant 

gradient problem by truncating the gradient flow, while the Darknet53 addresses the 

vanishing gradient issue. Thus, the number of calculated parameters is decreased, and the 

inference speed, a key metric in real-time object detection models, is dramatically boosted. 

The second component of the proposed network, the Neck, is built on the Path Aggregation 
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Network (PANet) (Zhou et al., 2022) to enhance the information flow and help in the 

accurate localization of pixels in the process of mask prediction. Hence, the possibility of 

creating features based on previously unseen data is improved. Finally, the Head is made of 

the convolutional sub-network to generate predictions from the anchor boxes for the 

detection process. 

  

Fig. 7. The architecture of YOLOv5 model (Luo et. al, 2021) 

To evaluate the the accuracy of the classified object in the real – time video stream, a 

synthetic loss function is established. It could be seen that the synthetic loss function is the 

sum of three kinds of losses: the confidence loss, the localization loss, and the classification 

loss. The formula of the synthetic loss function is written as follows: 

Synthetic Confidence Localization Classification                                          (1) 

which: Synthetic is the synthetic loss function; Confidence is the confidence loss; Localization  is the 

localization loss; and Classification  is the classification loss. 

According to (Hu et al., 2022), the confidence loss, the localization loss, and localization 

loss are calculated as in Eq. (2) to Eq. (4):  
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whereas: obj

ijR  means to judge whether there is an object center in grid mesh of the image. If 

the grid contains an object center, it is responsible for predicting the category probability of 

the object, iC  represents the confidence score, iC  represents the intersection of the 

prediction boundary box and the basic facts, and coord represents the weight of the 

classification error. 

For the activation stage of the proposed network, the SiLU function (Elfwing et al., 2018) 

is applied in the hidden layers, while the Sigmoid function (Alexandris et.al, 2019) is 

integrated in the output layers. To save computational time, the ADAM function (Cao et al., 

2023) is applied, which is the default in the original YOLOv5 network.  

3. RESULTS AND DISCUSSION 

To inspect the stability as well as the working performance of the proposed method, a 

differential wheeled robot integrated with a smartphone at the front of the model is designed. 

The completed concept of the model is shown in Fig. 8.  

 

 

a) The concept of the robot model  

 

b) Scheme of communication between devices 

Fig. 8. The concept of the mobile robot and communication between devices 
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The study uses an ultrasonic sensor HC-SR04 to estimate the distance from the robot to 

the object. From there, the system will transmit control signals to navigate the robot in 

different situations. 

After that, the case studies are investigated via several scenarios: human detection, signal 

traffic classification and navigation based on the line and the types of traffic light. 

3.1. Case study 1: Human detection 

The ability of the proposed approach to detect several human targets is shown in Fig. 9. 

It is evident that the model could perform well with the complicated attire of individuals 

dressed in white or black suits. Besides, the distance to each target is computed and displayed 

in real-time.  

 

 

Fig. 9. Human detection of the proposed model 

3.2.  Case study 2: Signal traffic classification 

Fig. 10 indicates the classification possibility of the designed model under different 

circumstances. To be more detailed, in the case of a stop sign, the robot will begin to detect 

and decelerate when the estimated distance to the sign reaches 0.5 meters. About 0.2 meters 

away from the sign, the robot will come to a complete stop. In addition, in the case of speed 

indicator signs, the robot will compute and update the motor velocity in order to maintain 

the permitted speed indicated by the signs. If the maximum speed is higher than the current 

speed, the robot could increase the velocity value. In contrast, the robot will slow down the 

current speed. 
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a) b) c) 

Fig. 10. Signal traffic classification rate of the designed model under different scenarios: a) stop sign;  

b) speed indicator sign with 0.2 m/s; c) speed indicator sign with 0.5 m/s 

3.3.  Case study 3: Navigation in complicated traffic situations 

In case study 3, the hypothetical situation is that the traffic light is green but there are still 

some people crossing the road. The control commands are executed in order of priority, from 

human objects to light signals. Hence, the robot has to stop from a safe distance in this 

situation, as shown in Fig. 11. 

 

 

Fig. 11. Navigation for mobile robot in complicated traffic situations 

3.4 Analyze the experimental statistics with various levels of illumination 

For robots to be useful, they need to be smart enough to see what is going on around them 

and make decisions based on what they see. Object recognition is one of the critical tasks 

that robots must perform to function correctly. In this sub-section, all case studies mentioned 

above are conducted with different rate of illumination variables (Full bright – 1000 lux, 
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Normal bright – 750 lux, Weak light – 300 lux). The normal speed of the robot is still set at 

0.2 m/s and 0.5 m/s, respectively. Tab. 1 to Tab. 6 show the results of detection under 

different illumination conditions. The x-y figure generated from the tests revealed that the 

proposed algorithm had a high accuracy rate of over 75% in recognizing objects. The 

algorithm performed exceptionally well in recognizing traffic lights, with an accuracy rate 

of between 86.5% and 98.4%. The recognition of human objects, however, had a lower 

accuracy rate compared to that of traffic lights, with values ranging from 81.8% to 94.1%. 

The lowest accuracy rate was observed in the recognition of signs, with values ranging from 

76.1% to 93%. The results showed that as the light intensity increased, the robot’s ability to 

identify objects improved. However, we observed a stable recognition ability for the robot. 

Interestingly, the robot was less accurate in recognizing objects when it moved at a speed of 

0.5 m/s than when it moved at a speed of 0.2m/s. This finding suggests that the target 

recognition of the robot model improves when it moves slowly. Additionally, the largest 

amplitude fluctuation in accuracy was found in the recognition of the stop sign at a light 

intensity of 1000 lux in both speed scenarios. Furthermore, it is noticed that when the robot 

encountered the speed indicator 20, it tended to slow down, which led to an improvement in 

identification accuracy. The results demonstrate that environmental conditions, such as light 

intensity levels, can impact object recognition ability in general. As the light intensity 

increased, the robot identification ability improved. This finding is consistent with previous 

studies on object recognition, where an increase in light intensity improved the recognition 

ability of algorithms. 

Tab. 1. Detection rates under 1000-lux condition at speed 0.5 m/s 

Time (s) Person Red Light Green Light Stop Sign 
Speed 

Indicator 60 

Speed 

Indicator 20 

1 89.6 93.8 96.6 88.2 87.7 88.9 

2 89.3 92.5 96.7 92.8 88.8 87.3 

3 90.1 95.8 96.5 90.7 87 87.3 

4 91 97.3 97.1 85.4 87.3 88.6 

5 91.5 92.6 95.8 93 88.4 88.8 

6 91.7 94.5 94.4 92.5 87.9 88.3 

7 89.4 94.6 95.7 84 87.6 87.5 

8 91.6 93.3 97.2 92.3 88.1 87.8 

9 89.6 93.1 96.1 88.9 87 87.5 

10 89.2 96.9 96.4 91.5 87.6 87.1 

Tab. 2. Detection rates under 750-lux condition at speed 0.5 m/s 

Time (s) Person Red Light Green Light Stop Sign 
Speed 

Indicator 60 

Speed 

Indicator 20 

1 84.5 93.6 90.4 86.5 80.5 81.2 

2 84.1 90.6 90.2 87.5 81.4 81.9 

3 83.4 91.1 90.5 87.2 81.2 82 

4 85.6 93 90 85.9 81.6 81.3 

5 84.1 90.6 91.9 85.7 80.4 81 

6 84 91.9 91.7 85.5 81.1 81.3 

7 85 93 91.1 86.4 81.5 80.7 

8 83 93.6 91.4 86.1 80.2 80.1 

9 84 93.7 90.9 85.7 81.2 81.3 

10 83.8 91.5 91.4 87.6 81.8 81.7 
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Tab. 3. Detection rates under 300-lux condition at speed 0.5 m/s 

Time (s) Person Red Light Green Light Stop Sign 
Speed 

Indicator 60 

Speed 

Indicator 20 

1 81.8 87.1 89.6 77.3 77.6 79.2 

2 82.7 90.1 87.7 76.2 78.1 78.6 

3 83.2 88.7 88.5 76.1 77.4 76.6 

4 83.1 87.6 89.9 77.2 76.3 77.2 

5 83.2 90.3 87.5 76.8 79.7 77.7 

6 82.8 86.8 88.1 79.1 79.5 76.1 

7 82.8 89.4 90.9 78.7 77.8 78.1 

8 83.4 86.6 89.5 79.8 79.8 77.3 

9 84.1 88.4 89.1 80 79.3 76.8 

10 84.1 89.3 86.5 78.3 79.9 76.6 

Tab. 4. Detection rates under 1000-lux condition at speed 0.2 m/s 

Time (s) Person Red Light Green Light Stop Sign 
Speed 

Indicator 60 

Speed 

Indicator 20 

1 90.9 98.4 94.9 88.2 89.1 89.4 

2 91.9 97.4 95.3 92.8 87.5 88.6 

3 92.5 93.8 91.8 90.7 87 89.2 

4 93.1 95.1 93.1 85.4 89 89.7 

5 89 95.5 94.6 93 88.6 88.7 

6 91.5 92.7 95.1 92.5 89.7 89.2 

7 88.1 92.1 93.7 84 88.1 89.6 

8 94.1 94.5 96.7 92.3 88.7 88.6 

9 92.9 98.2 94.7 88.9 87.8 89.4 

10 92.9 93.1 95.5 91.5 88.9 88.7 

Tab. 5. Detection rates under 750-lux condition at speed 0.2 m/s 

Time (s) Person Red Light Green Light Stop Sign 
Speed 

Indicator 60 

Speed 

Indicator 20 

1 88.7 93.6 94.6 86.5 86.9 86.1 

2 88.4 90.6 95 87.5 85.6 85.6 

3 87.5 91 91.9 87.2 88.4 85.8 

4 88.1 93 90.1 85.9 85.3 87.2 

5 87 90.6 90.3 85.7 85.8 86.1 

6 89 91.9 91.4 85.5 85.6 86.2 

7 87.1 93 94 86.4 87.8 85.2 

8 87.3 93.6 90.1 86.1 86.9 85.4 

9 87.4 93.7 92.7 85.7 87.7 86.7 

10 88.6 91.5 91.2 87.6 88.2 87.5 

Tab. 6. Detection rates under 300-lux condition at speed 0.2 m/s 

Time (s) Person Red Light Green Light Stop Sign 
Speed 

Indicator 60 

Speed 

Indicator 20 

1 81.8 87.1 89.6 86.5 82.6 82.4 

2 82.7 90.1 87.7 87.5 83.1 82.2 

3 83.2 88 88.5 87.2 82.6 82.9 

4 83.1 87.6 89.9 85.9 82.2 82 

5 83.2 90.3 87.5 85.7 83.1 82.3 

6 82.8 86.8 88.1 85.5 82.4 82.9 

7 82.8 89.4 90.9 86.4 82.3 83.5 

8 83.4 86.6 89.5 86.1 82.7 83.3 

9 84 88.4 89.1 85.7 83.9 83.7 

10 84 89.3 86.5 87.6 83.7 82.6 
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From the obtained results, some summaries are drawn up as follows: 

 To achieve the path planning, a lane detection method based on binary images is 

proposed to provide exact trajectories. 

 The results indicate that environmental conditions such as light intensity could impact 

the object recognition of the robot. As the light intensity increased, the recognition 

ability of the robot model improved. This finding is consistent with previous studies 

in the same field.  

 Moreover, it is noticed that the precision of recognition on multiple targets is better 

when the robot model moves at a slower speed of 0.2 m/s instead of 0.5 m/s. This 

implies that in practical scenarios, it may be necessary to slow down the robot to 

enhance the detection accuracy. 

 In the case of complicated traffic situations, it is necessary to design rules of 

precedence to give appropriate motion behaviors on the mobile robot. Hence, the 

safety of both the robot and the target could be ensured. This is proven clear in Case 

Study 3. 

4. CONCLUSION 

In this paper, a detection framework for mobile robot navigation based on computer 

vision and deep learning is proposed. This study aims to automatically navigate the mobile 

robot in complex traffic situations by intentionally combining several algorithms and the 

YOLOv5 model. The experimental environment is configured with the appropriate 

conditions to evaluate the functionality of the proposed approach. In conclusion, this study 

contributes to the understanding of the factors that affect the performance of an object 

recognition algorithm. Moreover, the proposed framework not only assures obstacle 

avoidance, but also stabilizes the robot in its desired position and orientation despite 

slippage. These findings have important implications for the development of robotics and 

automation technologies in various fields, including manufacturing, transportation, and 

healthcare. Future research can focus on exploring the impact of other environmental factors, 

such as temperature, humidity, and noise for mobile robots in real-time applications. 
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