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Abstract 

Dysphonia is a prevalent symptom of some respiratory diseases that affects voice 

quality, even for prolonged periods. For its diagnosis, speech-language pathologists 

make use of different acoustic parameters to perform objective evaluations on patients 

and determine the type of dysphonia that affects them, such as hyperfunctional and 

hypofunctional dysphonia, which is important because each type requires a different 

treatment. In the field of artificial intelligence this problem has been addressed through 

the use of acoustic parameters that are used as input data to train machine learning 

and deep learning models. However, its purpose is usually to identify whether a patient 

is ill or not, making binary classifications between healthy voices and voices with 

dysphonia, but not between dysphonias. In this paper, harmonic-to-noise ratio, cepstral 

peak prominence-smoothed, zero crossing rate and the means of the Mel frequency 

cepstral coefficients (2-19) are used to make multiclass classification of voices with 

euphony, hyperfunction and hypofunction by means of six machine learning algorithms, 

which are: Random Forest, K nearest neighbors, Logistic regression, Decision trees, 

Support vector machines and Naive Bayes. In order to evaluate which of them presents 

a better performance to identify the three voice classes, bootstrap.632 was used. It is 

concluded that the best confidence interval ranges from 87% to 92%, in terms of 

accuracy for the K Nearest Neighbors model. Results can be implemented in the 

development of a complementary application for the clinical diagnosis or monitoring 

of a patient under the supervision of a specialist. 
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1. INTRODUCTION 

Dysphonia is a voice disorder characterized by the abnormal loss of typical voice quality 

due to functional or organic disturbances in the larynx. It can be classified into three primary 

categories: Functional, Organic, and Mixed (Behlau & Pontes, 1989). 

Functional dysphonia, often associated with emotional stress, poor vocal habits, or 

excessive voice use in daily activities, is typically accompanied by symptoms such as 

intermittent hoarseness, vocal projection difficulties, and occasional throat discomfort or 

tension due to vocal fatigue. 

Conversely, organic dysphonia results from physical laryngeal disorders, including 

injuries, infections, tumors, or other medical conditions that directly impact the laryngeal 

structure. It tends to present as persistent hoarseness, significant alterations in vocal quality, 

and occasional throat pain or discomfort. 

Mixed dysphonias represent a combination of both organic and functional factors, 

resulting in diverse symptoms, including variable hoarseness, shifts in vocal quality, 

discomfort, occasional vocal fatigue, and more. Recognizing these distinctions is imperative 

in clinical practice, as they necessitate distinct therapeutic approaches. 

Another indicator frequently utilized to differentiate vocal disorders pertains to the 

biomechanics of phonation, which distinguishes between hyperfunction and hypofunction. 

Hyperfunctional dysphonia arises from excessive engagement of the muscles involved in 

glottic closure, affecting the ventricular bands, resulting in a tense, rough, high-frequency 

voice with increased intensity (López, 1997). Conversely, hypofunctional dysphonia is 

characterized by laryngeal muscle weakness, incomplete glottis closure, and a breathy, low-

intensity voice (López, 2000). The former is typically associated with functional dysphonias, 

while the latter is linked to organic dysphonias (Farias, 2016). The recent COVID-19 

pandemic has led to both hyperfunctional and hypofunctional voice alterations.  

The causes of dysphonia are multifaceted and encompass factors such as viral invasion 

of the glottic epithelium, as observed in infections, which can result in damage. Research by 

Hoffmann et al. (2020) suggests that the ACE2 (Angiotensin-Converting Enzyme 2) protein, 

used as a receptor by certain viruses like SARS-CoV-2, plays a pivotal role in these vocal 

fold alterations. Moreover, Descamps et al. (2020) has demonstrated the expression of ACE2 

in the epithelial cells of the vocal folds. 

During the COVID-19 pandemic, dysphonia has been reported as a prevalent symptom, 

especially in patients with laryngeal inflammation, even in post-infection stages. 

Additionally, it can also arise in patients who have undergone tracheal intubation (Verdaguer 

et al., 2008), where structural changes in the larynx can impact vocal function. Prolonged 

intubation can lead to mild to severe damage. 

Dysphonia requires therapy from an otolaryngologist or a speech therapist, who need 

objective tools to provide solutions (Behlau et al., 2005), which can be developed in the field 

of artificial intelligence, where machine learning algorithms are implemented to classify data 

for a specific purpose, and are frequently used in medicine to develop diagnostic or 

rehabilitation systems. 

In clinical practice, it is essential to distinguish between hypofunctional and 

hyperfunctional dysphonia, as they require different rehabilitation schemes. Additionally, a 

patient may switch from one to another due to compensatory phonation mechanisms. 
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In this paper, the harmonic-to-noise ratio (HNR), cepstral peak prominence smoothed 

(CPPS), zero-crossing rate (ZCR) and the means of the Mel frequency cepstral coefficients 

(2-19) are used to perform a multiclass classification of euphonic, hyperfunctional and 

hypofunctional voices using six machine learning algorithms: Random Forest, K-Nearest 

Neighbors, Logistic Regression, Decision Trees, Support Vector Machines and Naive Bayes. 

The performance of these algorithms in identifying the three voice types through the 

mentioned acoustic parameters was evaluated using bootstrap.632. The results obtained from 

this research can be useful in developing a complementary application for clinical diagnosis 

or patient monitoring under specialist supervision. 

The second section discusses some related works to observe how the problem has usually 

been addressed. The third section describes the methods and materials used in developing 

this project. The fourth section presents the implementation. The fifth section analyzes the 

results obtained. Finally, the sixth section presents the conclusions and future work. 

2. RELATED WORKS 

Several projects have been developed aiming to identify disorders that affect voice 

quality, even working with the same databases used in the present project. However, they 

focus on binary classification between healthy and pathological voices, that is, identifying 

whether a person is sick or not. 

Verde et al. (2019) estimated F0, Jitter, Shimmer, and HNR from 2003 samples (796 

healthy voices and 1207 pathological voices) as input to the classifier. The Boosted Trees 

algorithm is employed, using an 80-20 proportion for the training and testing phases, 

obtaining metrics of 83% and 86% for sensitivity and specificity, respectively. The authors 

clarify that the classification is binary. They use three databases: Massachusetts Eye and Ear 

Infirmary (MEEI), Saarbruecken Voice Database (SVD), and VOice ICar fEDerico II 

(VOICED). 

Chen & Chen (2022) used a deep neural network for classification, extracting MFCC 

features (12 coefficients) from 114 samples of the VOICED database and obtaining metrics 

of sensitivity, specificity, precision, accuracy, and F1 with 97.8%, 99.4%, 99.4%, 98.6%, 

and 98.4%, respectively. It should be noted that the classification is binary. 

Altayeb & Al-Ghraibah (2022) explored different voice feature extraction methods, 

including Mel frequency cepstral coefficients, zero-crossing rate, and discrete wavelet 

transform. The support vector machine algorithm was employed for classification, achieving 

100% accuracy using a group of MFCC features (12 coefficients) and kurtosis, based on the 

VOICED database. The classification is also binary, as in previous projects, but the 

difference lies in conducting separate classifications for each disorder with a healthy voice, 

rather than distinguishing between pathological voices. 

Hassan et al. (2020) used a dataset corresponding to 80 people (60 healthy and 20 with 

pathology), with audio samples of coughs, breathing, and voice. An LSTM-type RNN was 

used on the features: Spectral centroid, spectral roll-off, zero-crossing rate, and MFCC. A 

70/30 ratio was adopted between training and testing. The area under the curve (AUC) 

reached around 97.4%, 98.8%, and 84.4% when classifying cough, breathing, and voice, 

respectively. 
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Radha et al. (2021) used the parameters chroma STFT, spectral centroid, spectral 

bandwidth, MFCC, roll-off, and zero-crossing rate for Parkinson's disease detection, as 

speech deterioration is an early indicator in this disease. A classification method based on 

convolutional neural networks, artificial neural networks, and hidden Markov model is used 

to distinguish samples of Parkinson's patients and healthy individuals. The artificial neural 

network-based model achieved a recognition rate of 96%. 

3. METHODS AND MATERIALS 

3.1. Databases 

The dataset used throughout this project consists of samples from two databases: 

Saarbruecken Voice Data Base (Woldert-Jokisz, 2007) and Voice ICar fEDerico II (Cesari et 

al., 2018). Exactly 331 samples were taken, 208 from SVD and 123 from VOICED, 

corresponding to a total of 193 individuals, of whom 55 have hypofunction, 64 have 

hyperfunction, and 74 have euphony. All audios are sustained phonations of the vowel /a/. The 

samples were preprocessed since SVD samples have a sampling frequency of 50 kHz and a 

duration of 1 second, while VOICED samples have a sampling frequency of 8 kHz and a duration 

of approximately 4 seconds. To homogenize the samples, those with a longer duration were 

divided, setting all to 1 second, and the sampling frequency was modified to 8 kHz, equalizing 

the frequency range present. The number of samples for each class was standardized to 190, 

which is the maximum number of samples that could be obtained for the hypofunction class. 

Therefore, the dataset used is composed of 570 samples in total, 190 samples with euphony, 190 

with hyperfunction, and 190 with hypofunction. 

3.2. Acoustic Parameters 

3.2.1. Means of the Mel Frequency Cepstral Coefficients 

Mel Frequency Cepstral Coefficients (MFCC) are a representation of the audio signal that is 

commonly used in speech processing and voice recognition. To obtain these coefficients, a Short-

Time Fourier Transform (STFT) is applied to a voice signal. Then, the resulting power is mapped 

onto a logarithmic Mel-frequency scale, and the cepstral coefficients are calculated from the 

resulting spectrum. Since the MFCC are calculated on a logarithmic scale, it fits better with 

human auditory perception, which is more sensitive to differences in frequency in the low-

frequency range than in the high-frequency range (Rivera et al., 2022). In general, MFCC are 

used as an efficient representation of a voice signal, which may be relevant for identifying voices 

with euphonia, hyperfunction, and hypofunction. It is worth noting that only the means of the 

coefficients are used, and not the complete vectors of the coefficients, as using the means reduces 

the dimensionality of the data and eliminates redundancy. This is due to the fact that the samples 

belong to sustained phonations of the vowel /a/ (Flórez-Gómez et al., 2022), so it would be 

expected that a voice with euphonia (which is characterized by being balanced and harmonic) 

possibly presents more constant or similar values throughout the vectors of each coefficient, 

while voices with hypofunction and hyperfunction possibly present more outliers and variability 

that would raise the values of the means, which is considered relevant for classification. 
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3.2.2. Cepstral Peak Prominence-Smoothed (CPPS) 

Cepstral Peak Prominence-Smoothed represents the difference between the most prominent 

cepstral peak, which corresponds to the first rahmonic, and the point with the same quefrency 

on the regression line through the smoothed cepstrum. Studies indicate that this parameter 

reflects the degree of dysphonia (Núñez-Batalla et al., 2019). Currently, in clinical practice, 

CPPS is the most widely used acoustic parameter for measuring vocal quality levels. 

3.2.3. Zero Crossing Rate (ZCR) 

Zero Crossing Rate (ZCR) is a value between 0 and 1 that indicates an average number of 

times the signal crosses the X-axis in defined intervals (Celdrán, 2015). Zero Crossing Rate can 

be useful in identifying differences between voices with euphonia and those with hyperfunction 

and hypofunction, as they may have a different zero crossing rate due to changes in vocal fold 

vibration. 

3.2.4. Harmonic-to-Noise Ratio (HNR) 

Harmonic-to-Noise Ratio is an evaluation of the ratio between the periodic and non-periodic 

components comprising a segment of vocal speech. The periodic component comes from vocal 

fold vibration, while the non-periodic component comes from glottal noise, expressed in dB. The 

evaluation of the ratio between these components reflects speech efficiency; that is, the greater 

the flow of air expelled from the lungs in vibrational energy of the vocal folds, the higher the 

HNR. A low HNR denotes an asthenic voice and dysphonia. 

3.3. Machine learning models 

The six machine learning models that have been employed to address the task of multiclass 

classification of the three voice classes in question are described below. 

3.3.1. Random Forest 

Random Forest is an ensemble model that uses multiple decision trees to perform 

classification. Each tree is trained with a random subsample of the data and a random selection 

of features. To classify an input object x, its position is evaluated in each tree and a class label is 

assigned based on the results from all the trees. The final classification is determined by voting 

the results of the individual trees (Schonlau & Zou, 2020). 

3.3.2. K Nearest Neighbors 

It is a classification model based on distance. The idea is that an object is classified based on 

the labels of its k nearest neighbors in the feature space. The value of k is chosen beforehand and 

can vary depending on the problem. 

For an input object x, the distance between x and each of the training points is calculated, and the 

k closest points are selected. The class of the input object is determined by majority voting among 

the k classes of the nearest neighbors (Taunk et al., 2019). 
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3.3.3. Logistic Regression 

Logistic regression is a linear classification model that uses the logistic function to predict the 

probability of belonging to a class. It can be extended for multiclass classification using 

techniques such as One-vs-Rest or SoftMax. In the One-vs-Rest approach, a logistic regression 

model is trained for each class, while in the SoftMax approach, a SoftMax activation function is 

used to assign probabilities to each class. Multiclass logistic regression uses a loss function such 

as Categorical Cross-Entropy to train the model and adjust the parameters (Daniels & Minot, 

2019). 

3.3.4. Decision Trees 

It is a classification model based on creating a tree of decision rules. Each node of the tree 

represents a decision rule based on a feature, and each branch represents a possible outcome of 

that rule. The tree is constructed from the training data, and the final classification is performed 

by traversing the tree from top to bottom until reaching a leaf that contains the class label 

(Charbuty & Abdulazeez, 2021). 

3.3.5. Support Vector Machines 

Support vector machines are classification models that attempt to find the best separation 

between classes by creating a hyperplane that maximizes the distance between the closest 

samples of each class. A kernel function is used to project the data into a higher-dimensional 

feature space to find the optimal hyperplane (James et al., 2013). 

3.3.6. Naive Bayes 

Naive Bayes is a probabilistic classification model based on Bayes' theorem and the naive 

assumption that all features are independent of each other. Using training data, the model 

calculates the probability of an object belonging to each class using Bayes' theorem (Murphy, 

2006). 

3.4. Model Evaluation Using Bootstrap.632 

Bootstrap.632 is a technique for evaluating machine learning models that uses bootstrap 

sampling to generate multiple random samples with replacement from the training dataset and 

trains a model on each of them. The model is then evaluated on a test dataset that was not used 

to train the model, and the evaluation of the models is adjusted using a correction based on the 

probability of a particular data point being in the training or test set in each bootstrap sample. 

This technique produces a more accurate estimate of the model's performance on new and 

unknown data (Efron, 1983). 

4. IMPLEMENTATION 

The data analysis and machine learning models training were programmed in Python, 

using various libraries such as NumPy, Pandas, and Scikit-learn. Additionally, the 



20 

Parselmouth library was used for the analysis of acoustic signals and the extraction of 

acoustic parameters. All the code was executed on Google Colab. 

In order to obtain better results, hyperparameter optimizations were performed on the 

machine learning models, using the grid search method, which resulted in the following 

configurations: 

1. For the Random Forest model, the entropy criterion was chosen to evaluate the 

quality of the partitions at each node. The maximum depth of the trees in the random 

forest was set to 30 levels. All available features were considered when searching for 

the best partition at each node. A minimum of 2 samples were required to split an 

internal node. The random forest consisted of a total of 500 decision trees, 

2. For the K Nearest Neighbors model, the ball tree algorithm was used to calculate the 

distances between instances. Three nearest neighbors were considered for 

classification, and the Manhattan distance (L1) was used as the distance metric. 

During classification, the nearest neighbors have more influence, as they are 

weighted inversely proportional to the distance, 

3. For the Decision Trees model, a split quality measure based on the 'log_loss' criterion 

was used. The tree was configured with a maximum depth of 20 levels to prevent 

overfitting. All features were considered, with the number of maximum features set 

to the logarithm with a base of 2 of the total number of features. Moreover, a 

minimum of 2 samples were required in a node to perform an additional split. The 

'best' strategy was employed to select the optimal split based on the defined quality 

criterion. 

4. For the Support Vector Machines model, a combination of hyperparameters with 

C=10, gamma=0.2, and kernel='rbf' achieved the best results in terms of accuracy. 

This indicates that a high value of C was used, prioritizing precise classification even 

with a narrower separation margin. Additionally, a moderate value of gamma (0.2) 

was chosen to consider the influence of nearby training points on the decision 

boundary. The 'rbf' kernel was used to capture nonlinear relationships between the 

data, 

5. For the Logistic Regression model, the optimal combination of hyperparameters was 

found to be C=10, penalty='l2' (Ridge regularization), and solver='newton-cg'. This 

indicates that a relatively weak regularization was chosen to prevent overfitting by 

adding the square of the coefficients. The 'newton-cg' solver was used, which is 

suitable for multiclass optimization problems and relies on the conjugate Newton 

method to optimize the model's objective function, 

6. For the Naive Bayes model, it was found that the optimal configuration includes a 

smoothing term for the covariance matrix of the Gaussian distributions equal to 

1𝑒−09. 

5. RESULTS ANALYSIS 

This section presents the results of the machine learning models, which have undergone 

hyperparameter optimization and bootstrap.632 evaluation (see Table 1). Confidence 

intervals for 500 iterations based on the accuracy metric of each model were obtained for 

the multiclass classification task of voices with euphonia, hypofunction, and hyperfunction. 
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Tab. 1. Confidence intervals of each machine learning model 

Model Confidence interval 

Random Forest 86-90% 

K Nearest Neighbors 87-92% 

Support Vector Machines 84-91% 

Decision Trees 79-85% 

Logistic Regression 58-65% 

Naïve Bayes 53-61% 

 

The distribution histograms obtained after applying the Bootstrap.632 method for the 

three best performing models is shown below. 

5.1. Random Forest Results 

The confidence interval obtained suggests that the model has a high probability of obtaining 

an accuracy between 86% and 90% on new data sets, which is an indicator that the model may 

be useful for the task of classifying voices with euphony, hypofunction and hyperfunction. Figure 

1 shows that in more than 120 of the 500 iterations performed there is a concentration in 

accuracies of 88%. Table 2 shows the densities of the Random Forest model accuracies. 

 

Fig. 1. Histogram of predictions and confidence interval of the Random Forest model 

Tab. 2. Densities of the Random Forest model accuracies 

Accuracy Density 

84.35% 2 

85.06% 7 

85.77% 18 

86.48% 53 

87.19% 89 

87.90% 131 

88.61% 97 

89.32% 64 

90.03% 31 

90.74% 8 
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5.2. K-Nearest Neighbors Results 

The 87% to 92% confidence interval indicates that if multiple random samples are taken from 

the data set, the accuracy of the model is expected to be within this range in most cases. 

Furthermore, the fact that the range is narrow indicates that the model is robust and that its 

performance is unlikely to vary significantly across different data sets. Figure 2 shows that much 

of the accuracies fall between 89% and 91% of the 500 iterations performed, with its highest 

concentration at 90% in more than 130 of the total iterations. Table 3 shows the densities of the 

K nearest neighbors model accuracies. 

The results obtained suggest that the K nearest neighbors model is a good candidate for voice 

classification in the three classes mentioned above, and that its accuracy is high enough to be 

considered useful in practical applications.  

 

Fig. 2. Histogram of predictions and confidence interval of the K-Nearest Neighbors model 

Tab. 3. Densities of the K-Nearest Neighbors model accuracies 

Accuracy Density 

85.25% 2 

86.10% 3 

86.96% 9 

87.81% 42 

88.67% 91 

89.52% 138 

90.38% 134 

91.23% 57 

92.09% 18 

92.94% 6 

5.3. Support Vector Machine Results 

The confidence interval obtained for this model, ranging from 84% to 91%, may indicate 

that the model's performance is consistent and stable. It suggests that the model is able to 

accurately classify most of the samples. Figure 3 shows that there are a large number of 



23 

accuracies that fall around 87%; however, many points fall within a higher percentage range, 

going from 88% to 90%. The model is able to classify all three speech classes with 

acceptable accuracy. Table 4 shows the densities of the Support Vector Machine model 

accuracies. 

  

Fig. 3. Histogram of predictions and confidence interval of the Support Vector Machine model 

Tab. 4. Densities of the Support Vector Machine model accuracies 

Accuracy Density 

82.99% 9 

83.99% 20 

84.99% 53 

85.99% 62 

86.99% 118 

87.99% 97 

88.99% 88 

89.99% 29 

90.99% 17 

91.99% 7 

6. CONCLUSIONS AND FUTURE WORK 

According to the presented results, it can be concluded that the K Nearest Neighbors 

model performs best for the multiclass classification task of voices with euphony, 

hypofunction, and hyperfunction, and could be considered for the development of 

complementary tools that may be useful in the objective evaluation of patients under the 

supervision of a specialist, by identifying the three voice classes and assigning an appropriate 

rehabilitation scheme. The KNN model presents a narrower confidence interval and a higher 

accuracy (87-92%) than other models such as Random Forest (86-90%) and Support Vector 

Machines (84-91%). Decision trees (79-85%) are above the 70% threshold that is considered 

acceptable for many classification problems; however, it is not the best option. On the other 

hand, logistic regression, and Naive Bayes showed less satisfactory performance with 
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confidence intervals that do not exceed 65%, indicating that these models may not be the 

most suitable for the task at hand. It should be noted that the classifications performed are 

multiclass, which is relevant considering that hypofunction and hyperfunction are two 

common types of dysphonia, and although they have individual characteristics, they also 

share some features. 

It is important to note that these results are valid for the hyperparameter settings and the 

dataset used in this study, and further experiments should be conducted to validate these 

results for different configurations and datasets. 

Data availability 

The set of voice samples with euphonia, hypofunction, and hyperfunction used in this 

study, which belong to the VOICED database, are publicly available under an Open Data 

Commons Attribution License on PhysioNet's website at 

https://physionet.org/content/voiced/1.0.0/. Additionally, voice samples from the 

Saarbruecken Voice Database are freely accessible to the public, provided by the Institute 

of Phonetics at the University of Saarland, and can be found at 

https://www.stimmdatenbank.coli.uni-saarland.de. 
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