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Abstract 

Employing vision-based hand gesture recognition for the interaction and 

communication of disabled individuals is highly beneficial. The hands and gestures of 

this category of people have a distinctive aspect, requiring the adaptation of a deep 

learning vision-based system with a dedicated dataset for each individual. To achieve 

this objective, the paper presents a novel approach for training gesture classification 

using few-shot samples. More specifically, the gesture classifiers are fine-tuned 

segments of a pre-trained deep network. The global framework consists of two modules. 

The first one is a base feature learner and a hand detector trained with normal people 

hand’s images; this module results in a hand detector ad hoc model. The second module 

is a learner sub-classifier; it is the leverage of the convolution layers of the hand 

detector feature extractor. It builds a shallow CNN trained with few-shot samples for 

gesture classification. The proposed approach enables the reuse of segments of a pre-

trained feature extractor to build a new sub-classification model. The results obtained 

by varying the size of the training dataset have demonstrated the efficiency of our 

method compared to the ones of the literature. 

1. INTRODUCTION 

Artificial Intelligence (AI) allows computers to do tasks such as decision-making, 

challenge-solving, scene understanding, and human speech comprehension in any language. 

Most AI applications aim to automate a process or replace human tasks; this is seen in 

factories, hospitals and even on the roads; meeting an autonomous car is no longer 

surprising.  
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However, a subset of the population has a genuine need for AI. Blind people or people 

with other disabilities have a difficulty executing essential human functions and daily living 

activities. Some of them cannot even express their needs, and keeping an eye on them all the 

time is a difficult task that requires hiring support and care staff. Suppose they can make a 

simple gesture with their hands or move one or many of their fingers. In that case, one can 

exploit these gestures to allow them to express themselves, call the nurse, move their beds, 

turn on/off the TV, control any equipment, and help them interact with intelligent systems 

and robots. It is well known that a massive amount of data is required for a good design of 

an artificial intelligence system. This constraint reduces the effectiveness of deep learning 

in domains where information is not widely available, such as diagnosing rare diseases 

where few medical images exist. The same case applies to the physiology of disabled 

individuals. The main objective of this study is to be able to adapt an intelligent system with 

limited data for interpreting the gestures of people with disabilities with distinctive aspects. 

The gesture recognition process requires an examination of the hand image once located 

within the observed scene. The literature survey described in (Bandini & Zariffa, 2020) 

thoroughly investigates the previous works in this field. The authors highlighted the latest 

taxonomy of hand signs computer vision methods and they have framed this problem into 

three macro-areas: localization, interpretation and application. The hand localization process 

consists of the identification, detection, tracking and estimation of the hand and the fingers 

in the observed scene; it also includes pose estimation and segmentation. The interpretation 

encloses the approaches of activity recognition, action/interaction recognition, gesture 

recognition and hand grasp analysis. Adapting deep learning based Object Detectors (OD) 

like Faster Region Based Convolutional Neural Network (Faster R-CNN) (Ren et al., 2015),  

You Only Look Once (YOLO) (Redmon et al., 2016),  and Single Shot Detection (SSD) 

(Liu et al., 2016) for hand gestures recognition is very useful for both localization and gesture 

recognition by classification, where each class refers to a particular gesture or sign. 

However, training an OD requires a large adequate dataset. In our application, subjects have 

reduced hand functionality which inevitably induces that each case of hand has a specific 

form and specific characteristics. Object detection is a challenging task when applied in real-

world circumstances involving new objects not seen in popular object detection datasets. To 

overcome this limitation, some works in Few-shot-learning  have been undertaken, but in 

their best results, the mean average precision metric (Henderson & Ferrari, 2017; Tang et 

al., 2022) did not exceed 60% (Vu et al., 2022). The accuracy of an autonomous assistance 

system should be maximized, and a wrong decision might have devastating consequences 

for such vulnerable persons. Based on this background and in order to enhance such 

accuracy, the authors propose a combined system of hand localization and gesture 

recognition trained in two phases, which can be easily adapted for special cases. The first 

module involves localizing the hand with a faster R-CNN as an object detector. It is trained 

and fine-tuned on large hand datasets. This part has two objectives. The first one is accurate 

hand localization, while the second is extracting standard features based on the convolution 

layers of its backbone. The second module of the proposed architecture is a shallow 

convolutional neural network. Its convolutional layer is a segment of the first model’s 

backbone fine-tuned during the second training phase. The main idea is that the first module 

is considered as a base model trained on a base dataset of common hand images for a global 

task, while the second one is considered as a new target domain for new tasks trained with a 

few-shot samples dataset of specific hand gestures. 
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While partial convolutional layers have recently emerged as an effective way to handle 

incomplete or corrupted images (Liu et al., 2023), their focused application has been limited 

to reconstructive photo tasks like inpainting. Partial convolutions selectively utilise available 

valid pixels while disregarding missing sections of images. This technique has yet to be 

extended to high-level computer vision problems within real domains. Our work looks at 

utilizing concepts of partial convolutions – namely selective computation and dynamic 

renormalization – for the distinct purpose of gesture recognition across people with diverse 

accessibility needs. By repurposing these methods in novel architectural combinations and 

directing them towards specialized skeletal representation inputs, we demonstrate the 

extensive untapped potential of partialized CNNs for efficiency gains in classification 

problems unrelated to image reconstruction. 

The results obtained demonstrate that our approach performs well on both localization 

and gesture recognition for any type of case with few-shot of subject images, which leads to 

an easy adaptation for real-world applications. 

The following is an overview of our contributions: 

− Our work is one of the few ones to investigate the issue of disabled people's hand 

gesture recognition. 

− We demonstrate that it is possible to use segments of a pre-trained model to construct 

another CNN.  

− We offer the possibility of adaptation and training from few support samples to be 

very easily implemented for specific tasks, and this is through the technique of fusion 

and transfer learning between the two proposed modules forming the final frozen 

model ready for deployment without decreasing the hand detector accuracy.  

− Through experiments, we demonstrate that the proposed approach consistently 

outperforms baseline techniques, especially when the number of samples is quite 

small. Our classifier adjusts to new gesture classifications much more quickly. 

2. RELATED WORKS 

This article proposes an approach that offers the possibility to adapt, with few shot 

samples, a hand gesture classifier for people with disabilities, which needs to address the 

process of object detection and image classification. Therefore, the authors rely on relevant 

works in automatic and intelligent assistance for people with disabilities, hand detection and 

hand gesture recognition. 

In the work presented in Utaminingrum et al. (2017), the authors integrated a computer 

vision-based obstacle detection system into a wheelchair to ensure safe driving. In Yang et 

al. (2019), a personal care robot was employed to assist patients, where communication is 

based on a visual bridge through sign language of lips, eye, head and hand.  

American Sign Language (ASL) expression allowed people who cannot speak to express 

their thoughts. Inspired by this language, Chattoraj et al. (2017) have proposed a method 

based on the SIFT (Lowe, 2004) algorithm for features extraction to recognize hand gestures. 

Dradas & Georganas (2011) have fed an SVM classifier with the same features used in 

(Chattoraj et al, 2017) to recognize gestures. Panwar et al. (2012) have used a classical image 

segmentation to process images for hand gesture recognition; the proposed method is based 

on image shape. Zhao et al. (2023) proposed a hand tremor as a motor symptom to diagnose 
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and assess the Parkinson's disease. In (Fathi et al., 2011; Y. Li et al., 2015; Pirsiavash & 

Ramanan, 2012), the authors have based their works on the egocentrics feature extraction 

for hand gesture classification (Fang et al., 2020; Huiwei et al., 2017). Other works (Hung 

et al., 2015, 2016; Likitlersuang et al., 2019) have added sensors-based technologies to 

perceive gestures in space and are not limited to visual information; they detect, estimate 

and classify any hand movements with gloves, gyroscopes and hand belts. Wearing coloured 

gloves for hand segmentation is an easy solution to be implemented. This technique reached 

good results for hand detection in (Ishiyama & Kurabayashi, 2016; Liang et al., 2015). Hand 

detection had been dealt with previously with Skin colour-based approaches, Depth-based 

approaches and Hand-crafted features. Deep convolutional networks have demonstrated 

great effectiveness in solving challenging problems in the field of computer vision, while 

many researchers have turned their attention to this field for the particular problem of gesture 

recognition. Mohammed et al. (2019) have proposed a cascade of convolutional neural 

networks (CNNs): a one-stage CNN for object detection and a second CNN for gesture 

recognition. Xu et al. (2020) have used GAN ( Generative  Adversarial Network) to 

reconstruct occluded hand parts after features extraction with CNN. The problem of partial 

hand occlusion was well solved in Sahoo et al. (2023). A work for both hand detection and 

rotation estimation has been proposed by Deng et al. (2018); they have used Faster R-CNN 

(Ren et al., 2015) to delimit region proposals in images containing hands and to extract local 

features; after that,  the problem of rotation estimation has been solved using CNN. The 

faster R-CNN has also been employed by Srividya et al. (2019) for hand detection. As 

mentioned above, many CNN-based works have been proposed; however, CNN models for 

either image of gestures classification (Bao et al., 2017; Zhang et al., 2018) or object 

detectors (Liu et al., 2016; Redmon et al., 2016; Ren et al., 2015) need large image datasets 

exceeding thousands of images. As we employed a partial network for minimal data training, 

the approach introduced by the authors in Li et al. (2023) involves the Knowledge-Guided 

Semantic Transfer Network. This model integrates vision-based feature learning, knowledge 

transfer, and classifier learning within a unified framework to achieve optimal compatibility.  

In the hand recognition field, many researchers have spent a lot of time collecting and 

processing (annotating) thousands of images. Hsiao et al. (2014) have collected a dataset of 

around 240000 tuple images (colour and depth images), with a mask of the hand region. In 

Bao et al. (2017), the authors have proposed a large dataset for hand detection. The images 

were acquired in two environments: simple and complex backgrounds. The EgoGesture 

(first-person view) has focused on gesture recognition for human–computer interaction; here 

some works have employed a special technique consisting of a RealSense camera mounted 

on the head (Zhang et al., 2018). 

3. PROPOSED METHOD 

All object detection techniques are composed of many processing parts (features 

extractor, region proposal network (RPN), deep features extractor, bounding boxes 

regressor), and each object detection technique has its own set of processes. The common 

part is the features extractor, called the backbone. It consists of several convolution blocks, 

each of them with a certain set of filters. The backbone can be customized on the condition 

of proving its efficiency, while in general, it is a reference model such as VGG16 (Simonyan 
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& Zisserman, 2015), ResNet (Szegedy et al., 2015), Inception (Szegedy et al., 2017) and 

their later versions. An overview presented in (El Moataz, 2020) summarizes the accuracy 

results of combining each OD method with a particular backbone. The main contribution of 

this work is to select a specific convolution block of the OD backbone to construct another 

classifier network’s backbone. OD outputs are tensors containing bounding boxes, classes, 

and scores. When the score of a detected object is greater than a certain threshold, a sparse 

set of cropped images is fed to the second module. Fig. 1 illustrates the global scheme of the 

proposed method, where we can observe that there are two modules (red and green bounding 

boxes), and each one represents a specific task. The first module task consists of training and 

producing a hand detector that is universal for all human hands. The second module task 

generates a CNN classifier for a specific instance. 

     

Fig. 1. Global framework representation 

3.1. Problem formulation 

Before explaining the overall system, we should first define some formal notions as 

follows: 

Let 𝐷 denote the global images dataset used for training the final fused model. Since we 

propose two modules to train two models in two phases with two different datasets (the first 

one is large and the second one is small), we denote by 𝐷𝑏𝑎𝑠𝑒 a large dataset of images of 

hands, and by 𝐷𝑛𝑜𝑣𝑒𝑙 a small dataset representing some gestures. Therefore, the global 

dataset can be expressed as 𝐷 = 𝐷𝑏𝑎𝑠𝑒 ∪  𝐷𝑛𝑜𝑣𝑒𝑙 and 𝐷𝑏𝑎𝑠𝑒 ∩  𝐷𝑛𝑜𝑣𝑒𝑙 = ∅.   In addition, 

since we address the gestures classification problem in this work, we consider the “hand” 

object  as a global class wrapping many shapes and gestures of hands that we denote 𝐶𝑔𝑙𝑜𝑏𝑎𝑙, 

while we consider gestures class 𝐶𝑛𝑜𝑣𝑒𝑙 = {𝐶𝑛𝑜𝑣𝑒𝑙
1 , 𝐶𝑛𝑜𝑣𝑒𝑙

2 , … , 𝐶𝑛𝑜𝑣𝑒𝑙
𝐽 } as a set of 𝐽 sub-

classes, where 𝐽 represents the number of gestures to classify. For the first module, we 

consider that we have only one global task denoted 𝑇.  𝑇 is a training task with dataset 𝐷𝑏𝑎𝑠𝑒  

belonging to class 𝐶𝑔𝑙𝑜𝑏𝑎𝑙. 𝑇 results in a trained base model 𝑀𝑏𝑎𝑠𝑒 for the “hand” object 

detection in the query image. 

The novel tasks denoted by 𝑇𝑗
′ in the second module,  where 𝑗 ∈ {1,2, … , 𝐽}, is for 

training 𝑀𝑛𝑜𝑣𝑒𝑙with dataset 𝐷𝑛𝑜𝑣𝑒𝑙. 
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3.2. OD training scheme 

In this step, an object detector is trained with a large dataset. Existing techniques have 

not been improved here, but the authors have ensured that the model is fed with a good 

dataset containing thousands of images where the persons' hands are annotated with multiple 

scene contexts. This dataset is the fusion of two benchmark sets(Nuzzi et al., 2021; Zheng 

et al., 2018) and this is to adapt the model to detect hands with several angles of view, scales 

and shapes. The OD features extractor is fine-tuned, robust and ready to provide useful 

patterns for both detection and classification. 

The OD model is trained following the next steps: 

1. Defining the global architecture for the initial model. 

2. Training model 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 with a universal dataset like the one presented in (Everingham 

et al., 2010).  

3. Training 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 with 𝐷𝑏𝑎𝑠𝑒.  

Process (c) represents 𝑇 and generates base model 𝑀𝑏𝑎𝑠𝑒 for OD. 

3.3. Partial network-based gestures classification 

The gesture classifier module is a shallow CNN consisting of two convolutional blocks 

and a fully connected layer. The first convolutional layer is a passive block, while the second 

layer partially reuses a block from the OD backbone network. This section explains how to 

enable the use of such a partial block. Notably, the proposed partial block concept differs 

from the typical technique of using an intermediate layer output, where the input would still 

come from the original network's input layer. In the presented approach, only a part of the 

original OD network is extracted and reused as a block in our gesture classifier. The authors 

formulate the passive block in a way that shapes its output to fit the expected input shape of 

the subsequent layers (The partial segmented block) to create our classifier CNN.  

 Mathematically, a convolution of an image with a set of blocks consists of multiple 

computations. 

𝐹 = 𝐶𝑜𝑛𝑣(𝐼𝑤×ℎ×𝑑𝑒𝑝𝑡ℎ; 𝑏0, 𝑏1, … . 𝑏𝑁)                            (1) 

Where 𝐹 is the resulting features map, 𝐼 is the input image with three channels and 𝑏𝑖 is 

the 𝑖𝑡ℎconvolution block. Equation (1) can be rewritten with more details as follows: 

𝐹 = 𝐶𝑜𝑛𝑣𝑁(𝐶𝑜𝑛𝑣𝑁−1(𝐶𝑜𝑛𝑣𝑁−2 … . (𝐶𝑜𝑛𝑣0(𝐼𝑤×ℎ×𝑑𝑒𝑝𝑡ℎ; 𝑏0) … . ; 𝑏𝑁−1); 𝑏𝑁       (2) 

Where 0 𝑎𝑛𝑑 𝑁 denote respectively the first and the last block indices. 

The output of any CNN backbone is a result of the recursive call of the convolution 

function 𝐶𝑜𝑛𝑣. According to Equation (2), 𝐶𝑜𝑛𝑣𝑁  convolves the result of 𝐶𝑜𝑛𝑣𝑁−1  with 

block 𝑏𝑁’s filters and so on. The first executed item is  𝐶𝑜𝑛𝑣0 and has as parameters the 

input image 𝐼𝑤×ℎ×𝑑𝑒𝑝ℎ𝑡  and  𝑏0. Fig. 2.A represents an example of a CNN feature extractor. 

Each block 𝑛 consists of filters 𝑓𝑖
𝑛 = 𝑘𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ where 𝑖 ∈ {1, … , 𝑁𝑓} and  𝑁𝑓  

denotes the number of filters of this block. The shape of the tensor coding any convolution 

block is (𝑓𝑤𝑖𝑑𝑡ℎ, 𝑓ℎ𝑒𝑖𝑔ℎ𝑡, 𝑓𝑑𝑒𝑝𝑡ℎ, 𝑁𝑓), where 𝑓𝑤𝑖𝑑𝑡ℎ, 𝑓ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑓𝑑𝑒𝑝𝑡ℎ  refer to the filter's 

kernel width, height, and depth respectively. All filters 𝑓𝑛 of the same block 𝑛 share the 
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same kernel shape 𝑘.  Block 0 in Fig. 2.A has 𝑁𝑓 = 4  (i.e., four filters) and generates four 

intermediate feature maps. Its shape parameters 𝑓𝑤𝑖𝑑𝑡ℎ, 𝑓ℎ𝑒𝑖𝑔ℎ𝑡, 𝑁𝑓 are hyperparameters 

fixed without any restriction.  

However, there is a mathematical constraint about the convolution of tensor 

𝑇𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝ℎ𝑡 with block 𝑏𝑛

𝑓𝑤𝑖𝑑𝑡ℎ×𝑓ℎ𝑒𝑖𝑔ℎ𝑡×𝑓𝑑𝑒𝑝𝑡ℎ×𝑁𝑓
 . 𝐶𝑜𝑛𝑣(𝑇𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ; 

𝑏𝑛

𝑓𝑤𝑖𝑑𝑡ℎ×𝑓ℎ𝑒𝑖𝑔ℎ𝑡×𝑓𝑑𝑒𝑝𝑡ℎ×𝑁𝑓
) can only be computed if  𝑇𝑑𝑒𝑝ℎ𝑡 = 𝑏𝑛

𝑓𝑑𝑒𝑝𝑡ℎ
 , i.e., the depth of 

filter 𝑏𝑛

𝑓𝑑𝑒𝑝𝑡ℎ
 of the 𝑛𝑡ℎ  block must match the number of filters 𝑁𝑓 of  block 𝑏𝑛−1. It is to 

note that, according to Fig. 2.A, each filter of block 2 has a depth equal to 5 which represents 

the number of filters  𝑁𝑓 of the previous block; the same rule is applicable for any CNN. 

 

Fig. 2. (A) represents an example of convolution blocks and their filters. (B) represents a simple RGB 

image (B.0) and its convolved results (B 1,2,3,4) with customized filters 

Unlike transfer learning techniques (Weiss et al., 2016), where the whole backbone is 

used, it is proposed to select the best block generating the best model. The proposed 

backbone architecture of a composed model 𝐶𝑀 consists of a passive block and a selected 

block 𝑏𝑖 within backbone 𝑀𝑏𝑎𝑠𝑒  described in section 3.2. A passive block of filters, 

𝑃𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ×𝑁𝑓 does not highlight any features (color or shape) before the training 

process. Its kernel is 0 except its center which is equal to 1. Figures Fig. 2.B. 1, 2, 3 and 4 

result from the convolution of the RGB image (Fig. 2.B.0) with four kernels (𝐾1, 𝐾2, 𝐾3, 𝐾4), 

respectively, whose compositions are as follows: 

𝐾1
3×3×3 = [

0 0 0
0 𝟏 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

] 

𝐾2
3×3×3 = [

0 0 0
𝟏 𝟏 𝟏
0 0 0

] [
0 0 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

] 

𝐾3
3×3×3 = [

0 𝟏 0
0 𝟏 0
0 𝟏 0

] [
0 0 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

] 

𝐾4
3×3×3 = [

0 0 0
0 1 0
0 0 0

] [
0 0 0
0 1 0
0 0 0

] [
0 0 0
0 1 0
0 0 0

] 
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Each kernel extracts a particular characteristic. 𝐾1 assigns importance to red color only, 

while 𝐾2 and 𝐾3  give importance to red color, horizontal and vertical edges. Unlike previous 

kernels,  𝐾4  is passive and no special features are focused. This technique is similar to the 

one introduced by He et al. (2016) for residual network conception where they used (1 × 1) 

filters to increase or decrease the number of generated feature maps. In He et al. (2016), they 

randomly initialize this category of filters like the others, while in our proposed method we 

specify them as 𝐾4 with zero biases.  

A passive block  𝑃 will precede the chosen segment for two reasons: The first one is to 

ensure the constrained convolution, without it, only the first selected segment can be 

convolved with input image 𝐼𝑤×ℎ×3  since its depth is equal to 𝑏0

𝑓𝑑𝑒𝑝𝑡ℎ
 . Therefore, to build 

all possible models with segments of 𝑀𝑏𝑎𝑠𝑒,  each block 𝑏𝑖 is preceded by a customized 

passive block 𝑃𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ×𝑁𝑓  where 𝑃𝑑𝑒𝑝𝑡ℎ = 𝐼𝑑𝑒𝑝𝑡ℎ = 3 and 𝑃𝑁𝑓 = 𝑏
𝑖

𝑓𝑑𝑒𝑝𝑡ℎ
. 

The second reason is to offer the model the possibility to fit the new task since training and 

tuning 𝑃 parameters will allow learning more characteristics. Hence, the feature maps 𝐹  

generated by the 𝑖𝑡ℎ 𝐶𝑀  backbone is: 

𝐹𝑖 = 𝐶𝑜𝑛𝑣1(𝐶𝑜𝑛𝑣0(𝐼𝑤×ℎ×𝑑𝑒𝑝𝑡ℎ; 𝑃𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ×𝑁𝑓); 𝑏𝑖)                   (3) 

Finally, we obtain 𝑁 composed models 𝐶𝑀 with different backbones and all are followed 

by fully connected SoftMax layers. The following algorithm summarizes the steps to create 

all possible composed models; it trains them and selects the best one for the focused task. 

 

Algorithm 1 Base model segmentation/ Composed model creation / Training all models/Best model 

selection 

Input: 

           Trained base model  𝑀𝑏𝑎𝑠𝑒 with 𝐷𝑏𝑎𝑠𝑒  

          𝐶𝑛𝑜𝑣𝑒𝑙  and 𝐷𝑛𝑜𝑣𝑒𝑙  

Base model segmentation (Stage 1) 

1: Load and open 𝑀𝑏𝑎𝑠𝑒 

2: Initialize an empty set: 𝑆𝑒𝑡𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 ← ∅  

3: for layer in 𝑀𝑏𝑎𝑠𝑒 . 𝑙𝑎𝑦𝑒𝑟𝑠 do: 

4:       if the layer is ‘conv_layer’ // Exclude all layers except convolution  

5:          𝑆𝑒𝑡𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 ←  𝑆𝑒𝑡𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 ∪  𝑙𝑎𝑦𝑒𝑟 

Composed model creation (Stage 2) 

1: Initialize an empty set: 𝐶𝑀 ← ∅  

2: Initialize 𝑤𝑖𝑑𝑡ℎ ← ℎ𝑒𝑖𝑔ℎ𝑡 ← ℎ𝑦𝑝𝑒𝑟_𝑝𝑎𝑟𝑎𝑚1 

3: Initialize 𝑑𝑒𝑝𝑡ℎ ← 𝐼𝑑𝑒𝑝ℎ𝑡  

4: for b in 𝑆𝑒𝑡𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 do  

5:       𝑁𝑓 ← 𝑏𝑑𝑒𝑝𝑡ℎ 

6:       𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑒𝑛𝑠𝑜𝑟(𝑃𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ×𝑁𝑓) 

7:      Initialize all elements of 𝑃 ← 0  

8:       for x in range ( 𝑃𝑑𝑒𝑝𝑡ℎ) 

9:  for y in range ( 𝑃𝑁𝑓)  

10:      𝑃[⌈
𝑤𝑖𝑑𝑡ℎ

2
⌉ , ⌈

ℎ𝑒𝑖𝑔ℎ𝑡

2
⌉ 𝑥, 𝑦] ← 1      

11:       𝑐𝑚 ← 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙(𝑃, 𝑏, 𝐹𝑢𝑙𝑙𝑦𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 , 𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝐶𝑛𝑜𝑣𝑒𝑙) 
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12:      𝐶𝑀 ← 𝐶𝑀 ∪ 𝑐𝑚  

Training all models (Stage 3) 

1: Initialize epoch ← ℎ𝑦𝑝𝑒𝑟_𝑝𝑎𝑟𝑎𝑚2 

2: Initialize ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑒𝑠 ← ∅  

3: for 𝑐𝑚 in 𝐶𝑀 do 

4:      ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← train (𝑐𝑚, 𝐶𝑛𝑜𝑣𝑒𝑙  ,𝐷𝑛𝑜𝑣𝑒𝑙 , 𝑒𝑝𝑜𝑐ℎ) 

5:       ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑒𝑠 ← ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑒𝑠 ∪ ℎ𝑖𝑠𝑡𝑜𝑟𝑦 

Best model selection (Stage 4) 

1: Select a 𝑚𝑒𝑡𝑟𝑖𝑐 ← 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  

2: 𝑖𝑛𝑑𝑖𝑐𝑒_𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ← 𝑎𝑟𝑔𝑚𝑎𝑥(ℎ𝑖𝑠𝑜𝑟𝑖𝑒𝑠𝑚𝑒𝑡𝑟𝑖𝑐) 

3:𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ← 𝐶𝑀𝑖𝑛𝑑𝑖𝑐𝑒_𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙  

 

Algorithm 1 consists of four stages. The first one browses all 𝑀𝑏𝑎𝑠𝑒 layers, seeks for 

convolution blocks and inserts them into set 𝑆𝑒𝑡𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠. The second stage builds 𝑁  models 

where 𝑁 = 𝐶𝑎𝑟𝑑(𝑆𝑒𝑡𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠). All models share the same global architecture:       𝑃 →

Max_pooling → 𝐶𝑜𝑛𝑣_𝑏𝑙𝑜𝑐𝑘1 → Max_pooling → 𝐹𝑢𝑙𝑙_𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 → 𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝐶𝑛𝑜𝑣𝑒𝑙, 

but have different initial weights and shapes of their convolution blocks. The authors 

mention that 𝐶𝑜𝑛𝑣_𝑏𝑙𝑜𝑐𝑘1 layer retains the same activation function. The third stage trains 

all models with 𝐷𝑛𝑜𝑣𝑒𝑙 and saves the histories containing their respective losses and 

accuracies to keep track of their performances. At the fourth stage, all models are trained, 

and the best one providing the best accuracy is selected. The accuracy of each model is 

computed on the test dataset after training according to formula 4. 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
                                                   (4) 

Where TP, TN, FP and FN denote True positive, True negative, False positive and False 

negative respectively. 

4. EXPERIMENTS 

In this section, the implementation details are first introduced, the used datasets are 

explored. Subsequently, the authors briefly introduce the object detector fine-tuned for a 

global task. The results obtained were then presented with a limited dataset and compared 

with recent works. In the ablation studies presented in this section, the authors investigate 

the effectiveness, level, and sizes of the generated CNNs. The effect of different training 

sizes on the accuracy of the generated models was then analyzed, providing a comprehensive 

comparison with other work. Detailed comparisons in terms of accuracy and inference time 

with deep networks are also presented. 

4.1. Experimental setup 

Experiments were conducted using the following hardware setup: Intel Core i7 with 64 

GB RAM and NVIDIA 3090 RTX GPU. The models are implemented using the TensorFlow 

framework, along with the object detector that was also fine-tuned using the same 

framework. This enables the possibility of future fusion between the models for further 
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enhancements or integration. For the experiments on the MU-ASL-Digit and MU-ASL-

Alphabet benchmarks (Barczak et al., 2011), data augmentation was not employed. Data 

augmentation was only used for other experiments, with a factor of 4. The Adam optimizer 

was used, and its effectiveness was observed in these experiments. For each training, the 

batch size is set to 4 and the learning rate was initially set to 0.001 and decreased by 10% 

every 50 epochs. The models were trained for 200 epochs, and callbacks were integrated to 

save the best version based on accuracy on the validation data. 

4.2. Datasets 

Many datasets have been used in this work for both training and comparison. As 

mentioned in section 3.2, two merged datasets have been employed for the base model 

training steps. In the Oxford dataset  (Mittal et al., 2011) (Fig. 3. A),13050 hand instances 

are annotated; before training, we have added a script to generate new bounding boxes with 

aligned axes. We have also added 15000 hand instances of 48 subjects obtained from the 

dataset realized by Bambach et al. (2015) (Fig. 3. B). To evaluate our gesture classifier, a 

recent benchmark has been used (Nuzzi et al., 2021), it consists of 2400 images per subject. 

Five subjects performed some gestures with their hands (Fig. 3. C). We have performed 

many experimental comparisons in terms of accuracy, precision and time of inference on  

two challenging benchmarks for static hand gesture sign language (SL) recognition: the first 

one is the Massey University (MU) ASL dataset (Barczak et al., 2011) composed of 1820 

images of 26 gestures for letters (‘a’to ‘z’) referred as MU-ASL-Alphabet and 700 images 

of 10 other gestures for digits (‘0’ to ‘9’) denoted as MU-ASL-Digit. The second challenging  

SL benchmark with light variations is ASL finger spelling (Pugeault & Bowden, 2011), 

known in the literature as (ASL-FS-Color). This dataset contains more than 60000 images 

of 24 gestures. To experiment with our proposed approach in the complicated scenes, we 

have compared our results with the baseline architecture on the HaGrid dataset (Kapitanov 

et al., 2022) composed of  552992 samples representing 18 gestures. 

 

Fig. 3. Examples of instances of some datasets examples (Bambach et al., 2015; Kapitanov et al., 2022; 

Mittal et al., 2011) 
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In addition to these benchmarks of gestures, several sequences of images of people with 

disabilities were collected to verify the authors’ approach to this case study. As shown in 

Fig. 4, disabled people have special hand shapes and gestures that do not exist in any 

collected datasets in previous works. 

 

Fig. 4. Example of disabled people's hand gestures 

4.3. Object detector (base model) 

In their experiments, the authors chose Faster R-CNN (Ren et al., 2015) as the OD 

module and Inception V3 as its backbone network. To improve its mean average precision 

(MAP), the OD was trained with both  Oxford (Mittal et al., 2011)  and egocentric (Bambach 

et al., 2015) datasets. Its MAP goes beyond 63% which is a very good score for Faster R-

CNN. In the next experiments, we have constructed our classifiers according to Algorithm 

1 using segments of this trained backbone.  

4.4. Gestures classification results with limited data 

The authors conducted many experiments to evaluate the effectiveness of their gesture 

classifier. In the comparison presented in this section, the superior results are highlighted in 

bold. Since our objective is to reach a good accuracy using few samples, we split the dataset 

in (Nuzzi et al., 2021) into a 15% partition for training and an 85% partition for the test, 

while the traditional training approaches use the inverse ratio. When using Algorithm 1, the 

authors obtained a model able to classify 12 gestures, trained with only 10 images for each 

class “gesture”. They evaluated their model on the validation dataset that consists of 1800 

images. According to the confusion matrix presented in Fig. 5, the model accuracy exceeds 

85%. Some gestures like (‘collab’,’ Five’,’ Nine’,’ Punch’) are very well recognized while 

some like (‘Eight’) are confused with others. It is to note that the 85% obtained accuracy is 

an acceptable score since our training is conducted using only a few samples. 

To deepen the study, the authors conducted experiments with the MU-ASL-Digit and 

MU-ASL-Alphabet and compared our results with recent state-of-the-art works. With these 

manipulations, they also reversed the split ratio between training and validation. The 

performance of their approach is compared in terms of accuracies with other works in Table 

1. 
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Fig. 5. Confusion matrix of gesture classification on dataset with our approach (Nuzzi et al., 2021) 

In the MU-ASL-Digit dataset, the proposed model achieves an average accuracy of 

97.57% with a (20% train ,80% test) splitting ratio and 99.29% of accuracy with a (80% 

train, 20% test) splitting ratio. In both splitting data scenarios, our proposed classifier 

outperforms the techniques Network (Fang et al., 2020; Huiwei et al., 2017; Rahim et al., 

2021; Sahoo et al., 2019, 2023) and achieves performance levels close to those in (Damaneh 

et al., 2023). 

Tab. 1. Results comparison of the hand gesture classification on Mu-ASL-Digit dataset 

Methods Accuracy (%) 

NNM Factorization and Compressive Sensing (Huiwei et al., 2017) 87.80 

PCA based CNN and SVM (Sahoo et al., 2019) 95.00 

Geometric features and Fisher Vector (FV) (Fang et al., 2020)  95.30 

CNN based on the fusion of features (Rahim et al., 2021) 96.56 

Dual-stream Dense Residual Fusion Network (Sahoo et al., 2023) 96.14 

CNN, ORB descriptor and Gabor filter (Damaneh et al., 2023) 99.80 

The proposed method (20%-80%) 97.57 

The proposed method (80%-20%) 99.29 

 

I In the same context, the authors conducted experiments with the MU-ASL-Alphabet 

dataset, and the results are summarized in Table 2. Similarly to the previous experiment, the 

results demonstrate that their method outperforms the other techniques, providing superior 

outcomes.   

Tab. 2. Results comparison of the hand gesture classification on Mu-ASL-Alphabet dataset 

Methods Accuracy (%) 

KNN and Gabor filter + DWT (Virender et al., 2018)  50.83 

PCA based CNN and SVM (Sahoo et al., 2019) 92.60 

Feature extractor techniques (Sharma et al., 2020) 96.96 

GFA-Residual Stream (Sahoo et al., 2023) 93.38 

SF-dense Stream (Sahoo et al., 2023) 92.57 

Dual-stream Dense Residual Fusion Network (Sahoo et al., 2023)  96.14 

The proposed method (20%-80%) 96.07 

The proposed method (80%-20%) 98.35 

https://www.sciencedirect.com/topics/engineering/geometric-feature
https://www.sciencedirect.com/topics/computer-science/fisher-vector
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4.5. Ablation studies 

To gain a deeper insight into the efficacy of the proposed framework for generating 

optimal CNNs, two distinct ablation studies were condacted. The first focuses on the 

architecture, sizes, and accuracy of the CNNs, providing insights into the impact of these 

elements on the overall performance. The second ablation study delves into the training 

process, specifically examining the influence of varying training data sizes. 

4.5.1. Analyzes of generated models 

The authors carried out an experiment on a simple dataset for a specific task. The 

objective is to measure the reliability of each model generated from a segment of 𝑀𝑏𝑎𝑠𝑒. In 

this experiment, 22 models are trained after being created by algorithm 1, where the number 

of filters in the passive block and the segmented block ranges from 64 to 192 each with a 

(3x3) kernel.  Fig. 6 represents all generated models’ accuracies and losses. Every 𝑀𝑏𝑎𝑠𝑒 

backbone generates many feature levels. The low-level trait is shown in yellow, the low- and 

mid-level trait in green, the high- and mid-level trait in blue, and the high-level trait in red. 

 

Fig. 6. Composed models’ performances 

 

Fig. 7. Composed models’ parameters (Number of parameters of the convolutional layers) 

Hence, models 0 to 4 are built with blocks belonging to the low-level feature extractor of 

𝑀𝑏𝑎𝑠𝑒 and so on. We observe that the accuracy and the loss vary from one model to another. 
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The 𝐶𝑀19 accuracy reaches 96% and its loss is less than 0.25 which is very a good result, 

whereas 𝐶𝑀20 does not fit the new task even if it belongs to the same level as that of 𝐶𝑀19. 

The models’ performance variation is due to the feature nature generated by a specific block, 

some of them are useful for a specific task and others are not.  

In the usual training processes, the decision regarding the number of convolutional blocks 

and the quantity of filters allocated to each block is a crucial hyperparameter determined 

during the model's design phase. Typically, the augmentation of filter numbers is pursued 

with the aspiration of enhancing feature extraction, which subsequently contributes to the 

improved convergence of the CNN. The proposed method revolves around the meticulous 

selection of apt feature maps within a pre-trained model and their adaptation to a fresh task. 

This selection process can yield blocks with fewer parameters, resulting in heightened 

efficiency. Fig. 7 serves as a graphical representation of the parameter counts within the 

convolutional layers of each model generated. It's important to note that these counts exclude 

the fully connected layer component. Upon closer examination of Fig. 7, we observe that 

𝐶𝑀19, known for its commendable performance, boasts a more modest parameter count 

when compared to 𝐶𝑀18, 𝐶𝑀20, and 𝐶𝑀21. This distinction arises from the utilization of 

feature maps that were specifically tailored to excel in a particular task. In Tang et al. (2022), 

the authors claim that most existing methods focus more on high-level features. At the same 

time, they observe that low-level attention maps can capture more subtle parts containing 

detailed information that has yet to be fully explored. In our proposed work, the selected 

blocks can also be an intermediate block of the feature map rather than necessarily the one 

with the highest order or number of filters. 

 In Fig. 8, the training steps are explored. For greater clarity, the training graphic is 

divided into four segments, each representing a level (low, low-intermediate, upper-

intermediate, and high). Every model is represented by a particular colour. In each segment, 

we observe that some models have a good fit on the specific task and reach good accuracy 

scores on validation data, whereas others overfit. It is to note that 𝐶𝑀19 is not always the 

best model. In other scenarios where the target task and 𝑀𝑏𝑎𝑠𝑒 are different, other results 

shall be obtained, and graphics in figures Fig. 6, Fig. 7 and Fig. 8 will be different, which 

means that another model has to be selected. The best model generated for a task depends 

on its ability to extract the right features, and each model is built from a segment of 𝑀𝑏𝑎𝑠𝑒 

whose convolution filters vary. Thus, only an empirical search allows us to select the best 

model for a specific task. 

To demonstrate the proposed approach's efficiency, a standard CNN model called SM 

was trained from scratch. The 𝑆𝑀 architecture is the same as that of 𝐶𝑀19 , i.e., they both 

have the same number and dimensions of convolution blocks and the same fully connected 

layers, however, unlike 𝐶𝑀19, the 𝑆𝑀 filter weights are randomly initialized, as done in 

ordinary training.  

To objectively compare 𝐶𝑀19 and the 𝑆𝑀 performances, both model fittings are 

conducted on 𝐷𝑛𝑜𝑣𝑒𝑙. The models’ parameters tunability during training is also evaluated 

with the same hyperparameters (optimizer, learning rate, batch size, data augmentation, 

regularization, and number of steps…). Fig. 9 shows the 𝐶𝑀19 and 𝑆𝑀 training graphs. After 

200 epochs, 𝐶𝑀19 outperforms 𝑆𝑀 with a very large difference. Our obtained model 

accuracy exceeds 80% while the standard model is just over 50%. We also notice in the same 

figure (Fig.6.A) that the curve of the training graph of 𝐶𝑀19 is smoother than that of 𝑆𝑀.     
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For both 𝐶𝑀19 and 𝑆𝑀 graphs, we observe that the validation curve is on the training 

one, this is due to the dropout regularization which ignores randomly some neurons outputs 

during training and not in the validation process. Since our novel dataset 𝐷𝑛𝑜𝑣𝑒𝑙 is small, the 

dropout is used to reduce overfitting during the training process of 𝐶𝑀19 and 𝑆𝑀. Additional 

regularization methods, as suggested in (Zheng et al., 2018), find application in deep learning 

to mitigate overfitting. However, they can exert a notable influence on the model's layer 

weights, potentially diminishing the efficiency of our approach, given its reliance on pre-

trained layers. 

 

Fig. 8. Composed Models’ training graphs 

 

Fig. 9. Training graphs of 𝑪𝑴𝟏𝟗 and 𝑺𝑴 

4.5.2. The effect of varying the training data size 

The size of the training set and the quality of the data significantly impact the learning 

phase and can lead to overfitting or underfitting of the resulting network. In this section, an 
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experiment that involves varying the number of images used during training is presented. 

Fig. 10 shows the performance evolution based on the quantity of provided images. The 

authors used six variants consisting of 10, 20, 30, 40, 50 images and 80% of a subset from 

the MU-ASL-COLOR (Pugeault & Bowden, 2011) dataset. 

For each variant, models were generated by tuning segments of the pre-trained network 

with an appropriate number of variant-specific samples. For example, for the first variant, 

the training process utilizes 10 images per gesture and the last one (80%) utilizes more than 

11K images. For each variant, accuracy is evaluated on a validation dataset of 12K images.  

 

Fig. 10. Evolution of the performance according to the training dataset size 

When using the ASL-FS-Color benchmark, the CNN generated by the proposed method 

also achieves good performance, surpassing other techniques mentioned in Table 3. Despite 

having fewer training samples, the proposed system outperforms the literature works. 

However, this is only the case when surpassing 30 images per gesture. With variants of 10 

and 20 images per gesture, the results are not very conclusive. 

Tab. 3. Results comparison of the hand gesture classification on ASL-FS-Colordataset 

Methods Accuracy (%) 

Intensive feature extrication (Bhaumik et al., 2022) 81.72 

Residual block intensity feature (Sahoo et al., 2022)  88.65 

GFA-Residual Stream (Sahoo et al., 2023) 88.45 

SF-dense Stream (Sahoo et al., 2023)  86.95 

Dual-stream Dense Residual Fusion Network (Sahoo et al., 2023) 91.24 

The proposed method (10 images) 75.45 

The proposed method (20 images) 90.35 

The proposed method (30 images) 93.02 

The proposed method (50 images) 94.54 

The proposed method (80%-20%) 99.77 

 

We evaluated our approach in terms of precision, along with other metrics, and assessed 

its inter-class performance. The results were compared with a recent work (Sahoo et al., 

2023) that provided good analyses using the MU-ASL-Color benchmark. 
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An average across 24 gestures of the precision, recall, and F1-score metrics is calculated 

for both the DeReFNet (Sahoo et al., 2023) classifier and three proposed variants. The best 

obtained result (See Table 4) surpasses the performance of DeReNet by approximately 2.5% 

in all three evaluated metrics, once the classifier is trained with 30 images or more. To assess 

the ability to distinguish hard and similar gestures, we present in Table 5 a comparison of 

inter-class similar gestures across the MU-ASL-Color dataset. Table 5 represents the 

accuracy of gestures classification for letters A, E, K, P, and X. The results are good overall, 

except for letter A, where the accuracy is relatively poor. Bold values represent the best 

scores, while the underlined ones represent the lowest ones. The obtained results 

demonstrate that our generated classifier achieves higher accuracy in distinguishing inter-

class similar gestures compared to DeReFNet. This tabulated outcome validates the potential 

of the proposed approach. 

Tab. 4. Results comparison of the hand gesture classification on ASL-FS-Color dataset 

Methods Precision Recall F1-Score 

DeReFnet (Sahoo et al., 2023) 92.24 91.88 92.06 

The proposed method (20) 90.61 90.35 90.30 

The proposed method (30) 93.26 93.03 92.99 

The proposed method (50) 94.80 94.53 94.53 

Tab. 5. Results comparison of hard gesture classification on ASL-FS-Color dataset 

Methods A E K P X 

DeReFnet (Sahoo et al., 2023) 94.1 75.3 66.4 74.6 80.04 

The proposed method (20) 78.3 80.04 99.4 94.3 100 

The proposed method (30) 77.9 90.2 97.6 94.3 100 

The proposed method (50) 80.0 91.4 97.8 95.2 100 

5. COMPARISON WITH DEEP NETWORKS 

The conducted work involves constructing a shallow network using segments from any 

location of a trained deep network. The resulting network is less complex and maintains 

good performance. To substantiate these claims, experiments on the MU-ASL-Alphabet 

dataset were conducted. The authors reported some results from (Sahoo et al., 2023). They 

compared their CNN in terms of the number of parameters, accuracy and inference speed 

with DeRefNet, as well as CNN architectures ResNet50, VGG16 and DenseNet. According 

to Table 6, the proposed CNN is the shallowest among the CNN networks, with only 3.35 

million parameters, while maintaining good performance on this benchmark dataset. 

Additionally, it achieves the fastest inference speed compared to the other models. 

The proposed method was then compared with deep networks on the Hagrid dataset 

(Kapitanov et al., 2022). In Table 7, baseline models are trained with 622063 cropped images 

and tested with 54518. To prove the efficiency of our approach, we trained our models with 

a tiny dataset (0,7% of the total dataset) composed of 4320 images belonging to 18 gestures. 
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Tab. 6. Comparison with CNNs in terms of speed, accuracy, and size. M indicate Million 

CNN models Number of 

parameters 

Accuracy (%) Inference time 

(ms) 

VGG16 (Simonyan & Zisserman, 2015) 138.35M 93.71  12.40 

DenseNet (Huang et al., 2017) 20.03M  91.86  51.34 

Resnet 50 (He et al., 2015) 25.58M  92.62  14.28 

SENet (Hu et al., 2018) 28.1M  93.87  21.36 

DeReFnet (Sahoo et al., 2023) 5.24M  95.70  09.54 

Proposed CNN  3.35M 98.35 02.3 

 

The results with 43888 images were then tested. The best-obtained accuracy on the test 

dataset is 68%. In their experiments, the authors trained the MobileNetV3 model with the 

same tiny dataset and under the same context of our model training process for a fair 

comparison. They found that MobileNetV3 with or without transfer learning does not exceed 

6% of accuracy on the same test set.  

The obtained low accuracy score of MobileNetV3 has led to deduce that this 

classification model is close to a random classification process where the chance of getting 

the right prediction among 18 classes is 1/18=5.5%; this proves that its training process is 

overfitted while our model fits better.  

Tab. 7. Results comparison of the hand gesture classification on Hagrid dataset 

Model Accuracy% 

ResNet-18 98.72 

ResNet-152 99.11 

ResNeXt-50 98.99 

ResNeXt-101 99.28 

MobileNetV3 small 96.78 

MobileNetV3 large   97.88 

ViT-B/32 pre trained   98.49 

Proposed method 68.12 

MobileNetV3 small 05.4 

MobileNetV3 small pre trained 06.2    

 

Based on these experiments, it can be concluded that a shallow CNN composed of pre-

trained backbone segments can be very efficient and robust when we look for a good fitting 

with few samples. MobileNetV3 is very deep according to the obtained model which consists 

of two convolution blocks only, but training the baseline models without a large dataset, 

decreases considerably their accuracy. However, the authors’ approach is not very efficient 

as a few shot-learning techniques. It does not handle new classes. This work considers hand 

gestures as subclasses belonging to the global class that is “hand.” The presented approach 

can provide some areas for future research and provide a reference for transfer learning and 

classification of several shots. 

5.1. Hand detection and gesture classification 

In the hand detection experiments studied, the Faster R-CNN network was trained, as 

described in section 4.3. The obtained detection as bounding boxes framing the object hand 
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is without gesture classification. For accurate detection and classification, the deployed 

model is a sequential fusion of the OD and the classifier. The output of the OD serves as an 

intermediate step used as input for the classifier. To demonstrate the value of this approach, 

the authors conducted experiments using two dataset variants differing in terms of size. In 

Fig. 11.A, it was observed that the MAP and IOU metrics curves are ascending when training 

is with a large hand dataset. In the present experiments, the authors proceeded to fine-tune a 

hand detector using a suitable dataset for a person's gesture. It was observed (See Fig 11.B) 

that its IOU score decreases until it reaches 0,18. This phenomenon is caused by a lack of 

training data. For this reason, a combination was proposed instead of tuning with several 

samples. 

 

Fig. 11. Evolution of the OD training with  large and small datasets 

The authors tested the proposed combination for both detection and classification on reel 

subjects. Videos of disabled people are recorded showing some gestures. Fig. 12 represents 

some visual results. The proposed approach reached an average of 87% of precision and 

70% of recall for detection. 

 

Fig. 12. Visual results of our proposed application to real cases 



 

20 

6. CONCLUSION 

This work aims to apply a gesture recognition intelligent system for people with 

disabilities. The proposed approach consists of a hand detector and a gesture classifier. Only 

the gesture classifier is specific and adapted to each case, while the hand detector is universal 

for all patients. Regarding accuracy, the proposed method demonstrates competitive 

performance even with a training process based on a reduced dataset. By incorporating 

relevant segments from a pre-trained network, the proposed model captures valuable features 

and demonstrates accurate predictions comparable to or even surpassing other deep 

architectures. Moreover, the proposed method shows cases of a smaller model size compared 

to traditional CNNs. By utilizing selected segments from a larger pre-trained network, the 

generated CNN effectively reduces the parameters and memory footprint while maintaining 

comparable or improved performances. 
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