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Abstract  

The article presents the so-called coin bag problem, which is modeled by linear 

Diophantine equations. The problem in question involves assessing the contents of a 

set of coins based on its weight. Since this type of problem is undecidable, a special 

variant of the problem was proposed for which effective problem-solving algorithms 

can be developed. In this paper, an original heuristic is presented (an algorithm based 

on problem decomposition) which allows to solve the coin bag problem in fewer steps 

compared to a brute force algorithm. The proposed approach was verified in a series 

of computational experiments. Additionally, an authentication scheme making use of 

the approach was proposed as an example of potential practical use. 

1. INTRODUCTION 

The problem of solving Diophantine equations regards the assessment of the existence of 

a solution to a multivariable equation in the integer domain (Mordell, 1969). There is a long 

history of research devoted to finding an algorithm that would allow solving Diophantine 

equations of any form (Clausen & Fortenbacher, 1989; Mordell, 1969; Stark, 1973). In the 

past, this problem had become so important that in 1900 it was put forth as one of the 23 

most important challenges for 20th century mathematics (Hilbert's tenth problem (Kane, 

2006)). 

The decidability of the problem of solving Diophantine equations has been determined 

for selected classes of those problems. There are known algorithms for solving equations 

such as (the Pell equation, (Barbeau, 2003)). 

𝑎𝑥 + 𝑏𝑦 = 𝑐 (Clausen & Fortenbacher, 1989; Gilbert & Pathria, 1990)            (1) 

𝑥2 − 𝑛𝑦2 = 1                                                         (2) 
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The equation related to Fermat's Last Theorem, 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛, has turned out to have no 

natural solutions for 𝑛 > 2 (Darmon et al., 1995; Wiles, 1995). In general, however, the 

problem of assessing whether a given Diophantine equation has a solution is in the class of 

undecidable problems (Matiyasevich, 1993). It has been proven that there cannot exist an 

algorithm for solving all Diophantine equations (Matiyasievich's theorem, (Matiyasevich, 

1993)). 

A special case of the problem of solving Diophantine equations is a problem in which 

there is a guarantee that the equation has at least one solution. In such situations, a time-

effective method of determining the solution is sought. One example is the Diophantine 

equation which models the problem of assessing the value of coins based on their weight – 

the so-called coin bag problem. 

In this problem, a set of coins of different denominations is given. The denominations in 

which the coins can be found are known. Each denomination has a corresponding coin 

weight, and these values are also known. The goal is to find the answer to the following 

question: Can one determine the contents of a set of coins (the number of coins of each 

denomination) knowing the total weight of this set (weight 𝑀 of all the coins comprising 

this set)? – Fig. 1. 

Diophantine equations which model this type of problem usually have many solutions, 

only one of which is correct – the one that represents the actual contents of the set of coins. 

In this article, an algorithm has been proposed which can find the correct solution based on 

a repeated decomposition of the problem. The approach proposed here assumes that a 

Diophantine equation with multiple solutions can be reduced to a set of Diophantine 

equations with one solution each. Such a decomposition allows one to determine the solution 

much faster than the brute force algorithm dedicated to the considered problem. 

 

Fig.1. The coin bag problem 

The problem considered in this work is one of the numerous "coin weighing" problems 

described in the literature. These problems are used as representations of special cases of 

combinatorial problems. They include: 

− The counterfeit coin problem (Schell, 1945) – Given is a set of seemingly identical 

coins, one of which is fake and differs in weight from the others. The goal is to find 

the counterfeit coin using a minimum number of weighings on an ordinary balance 

scale with no weights. 

− The Frobenius problem (Tripathi, 1978) – Given is a set of denominations. The goal 

is to determine the largest monetary amount that cannot be spent using coins of the 
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given denominations (the problem is also known in pop culture as the Chicken 

McNugget Problem (Picciotto, 1987). 

− The coin change problem (Wright, 1975) – Given is a set of denominations. The goal 

is to find the smallest number of coins needed to make change for the given amount 

of money. 

− The defective coin problem (Brody & Verbin, 2010) – Given is one unbalanced coin 

which produces an uneven number of heads/tails results when flipped. The problem 

involves finding the probability of the coin landing either heads up or tails up in as 

few flips as possible. 

− The coin weighing problem (Karimi et al., 2018) – Given is a set of coins with 

unknown weights that take values within a given range. Any subset of the coins can 

be weighed, and the goal is to determine the weight of each coin in a minimum number 

of steps. 

The above problems concern the topic of "coin weighing", however, due to different 

assumptions, they require the development of dedicated algorithms. There are already many 

time-efficient solutions for each of them. Due to the undecidability of the considered coin 

bag problem, it is still open. For this reason, the aim of the research was to develop an 

algorithm to solve this type of problem. 

The present paper is organized as follows: Section 2 provides a formulation of the 

problem. It discusses the rules of decomposition and shows that for each value of 𝑀, it is 

possible to precisely determine the contents of the examined set of coins. Section 3 describes 

the algorithm based on problem decomposition. Section 4 presents the results of a 

comparison of the proposed algorithm with a brute force algorithm. A practical application 

example is presented in Section 5, and the key conclusions and the main directions of future 

research are stated in the Section 6. 

2. PROBLEM STATEMENT 

Typical Diophantine equations can be formulated in the following form [3]:  

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 0, 𝑥𝑖 ∈ ℂ                                           (3) 

This is a multivariable equation in the integer domain for which  it is assessed the 

existence of a solution. Many practical problems can be reduced to systems of Diophantine 

equations - among them is also the coin bag problem. Formally, the coin bag problem 

considered here is stated as follows: Given is a finite set of coins 𝐶 = {𝑐1, … , 𝑐𝑖, . . . , 𝑐𝑘}. 
Each coin 𝑐𝑖 is given by two values: weight  (𝑐𝑖) ∈ 𝑊 = { 1,  2, . . . ,  𝑗, . . . ,  𝑛} and 

denomination  (𝑐𝑖) ∈ 𝐷 = { 1,  2, …  𝑗, …  𝑛, }, where 𝑊 is the set of admissible weights 

of the coins used and 𝐷 is the set of their denominations.  

The contents of set 𝐶 are unknown, i.e. it is not known how many coins there are in set 

𝐶 and what coins they are. Coin set 𝐶 is being weighed (it is assumed that the scale used for 

weighing is perfect). The result of this operation is the total weight 𝑀 of all the coins in set 

𝐶. The goal is to find an answer to the following question:  

Is it possible to determine the contents of set C given only the total weight 𝑀 of the coins 

in this set? 
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One way to model a decision problem formulated in this way is to use the Diophantine 

equation given by: 

∑  𝑖 × 𝑎𝑖
𝑛
𝑖=1 = 𝑀                                                       (4) 

where:  

 𝑖 – weight of a coin of denomination  𝑖,  𝑖 ∈ ℕ, 

𝑎𝑖 – number of coins in set 𝐶 having denomination  𝑖, 𝑎𝑖 ∈ ℕ, 

𝑀 – weight of all the coins in set 𝐶, 𝑀 ∈ ℕ. 

Example. Let 𝐷 = { 1 = 2,  2 = 5,  3 = 9} be a set of denominations and let 𝑊 =
{ 1 =  , 2 = 5, 3 = 6} be a set of their weights. Given is a certain set of coins 𝐶. The 

total weight of the coins found in this set is 𝑀 = 1 . The goal is to find values 𝑎1, 𝑎2, 𝑎3 

which satisfy the equation: 

 × 𝑎1 + 5 × 𝑎2 + 6 × 𝑎3 = 1                                           (5) 

The solution to the above equation is the sequence 𝐴 = (1,2,0), which means that set 𝐶 

consist of: 1 coin of denomination 2, 2 coins of denomination 5 and 0 coins of denomination 

9 – see Fig. 2.  

 

Fig. 2. An example of a solution to equation (2) 

Under this model, the problem can be solved by answering the following question: 

Does equation (2) have one solution in the set of natural numbers? 

The solution to equation (2) is the sequence 𝐴 = (𝑎1, 𝑎2… , 𝑎𝑖 , . . . 𝑎𝑛), wherein 𝑎𝑖 denotes 

the number of coins of denomination  𝑖 found in set 𝐶.  

It turns out that for most values of 𝑀, the answer to this question is negative. 

Example. Let 𝐷 and 𝑊 be sets describing currently circulating Polish coins, then: 

𝐷 = { 1 = 10,  2 = 20,  3 = 50,  4 = 100,  5 = 200,  6 = 500}, (coin denominations 

are given in 𝑔𝑟osz†) 

 𝑊 = { 1 = 251, 2 =  22, 3 =  94, 4 = 500, 5 = 521, 6 = 654} (coin weights 

are given in 10−2 ∙ 𝑔). 

 
† „grosz” is a monetary unit equal to one hundredth of a zloty, the primary Polish monetary unit. 
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Consider two sets of coins being weighed: 𝐶1 = {𝑐1,1, 𝑐1,2, 𝑐1,3, 𝑐1,4}, 𝐶2 =

{𝑐2,1, 𝑐2,2, 𝑐2,3}. Set 𝐶1 contains four twenty-grosz coins, and set 𝐶2 contains two fifty-grosz 

coins and one one-zloty coin: 

 (𝑐1,1) =  (𝑐1,2) =  (𝑐1,3) =  (𝑐1,4) =  2 = 20, 

 (𝑐2,1) =  (𝑐2,2) =  3 = 50,  (𝑐2,3) =  4 = 100. 

The weights of the sets have the following values: 

𝑀1 =  (𝑐1,1) +  (𝑐1,2) +  (𝑐1,3) +  (𝑐1,4) = 4 ×  2 = 4 ×  22 = 1288 

𝑀2 =  (𝑐2,1) +  (𝑐2,2) +  (𝑐2,3) = 2 ×  3 + 4 = 2 ×  94 + 500 = 1288 

As one can see, the weights of the sets are identical, even though 𝐶1 ≠ 𝐶2. In this 

example, equation (2) has two solutions – 𝐴1 = (0,4,0,0,0,0) and 𝐴2 = (0,0,2,1,0,0).  
The example shows that it is not always possible to unequivocally determine the contents 

of a set of coins 𝐶, given solely the total weight 𝑀 of the coins in the set. 

It can be observed that there are infinitely many values of 𝑀, which do not provide a 

basis for unambiguously determining the contents of set 𝐶 (different sets may have the same 

weight). Let 𝑝(𝑀) be a function describing the number of solutions to equation (2) for a 

given set 𝑊 = { 1, . . . ,  𝑖, . . . ,  𝑛} and weight 𝑀. It can be observed that the function 𝑝(𝑀) 
always takes values greater than 1 for suitably large arguments 𝑀 (Fig. 3).  

 

Fig. 3. Graph of 𝒑(𝑴) for the set 𝑾 = {𝒘 =  𝟓 ,𝒘 = 𝟑  ,𝒘𝟑 = 𝟑𝟗𝟒,𝒘𝟒 = 𝟓  ,𝒘𝟓 = 𝟓  ,𝒘𝟔 =
𝟔𝟓𝟒} 

For the set 𝑊 used in the previous example (weights of Polish coins), the number of 

solutions 𝑝(𝑀) always takes a value greater than 1 for every 𝑀 >  595. This means that if 

the weight 𝑀 of set 𝐶 is greater than  595, it is impossible to determine its contents. In other 

words, there is only a finite set of values of 𝑀 for which the answer to the question stated in 

the problem statement is positive. 
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This observation leads to the formulation of a new variant of the problem which makes 

it possible to partition set  𝐶 into smaller portions and weighing these portions rather than 

the whole set. 

The operation of partitioning set 𝐶 involves creating any number of non-empty, mutually 

disjoint subsets of this set, whose union is equal to set 𝐶 (these subsets constitute a partition 

of set 𝐶) . 

It can be proven that the operation of partitioning allows one to determine the contents 

of any given set 𝐶, as described by the following theorem. 

Theorem 1. The contents of any set 𝐶 containing 𝑘 coins can be determined in no more 

than 2 × 𝑘 − 1 weighings. 

Proof: Let 𝑘 = 1. Let 𝐹(𝑘) denote the number of weighings needed to determine the 

contents of set 𝐶 containing 𝑘 coins. The result of partitioning set 𝐶 (for the given 𝑘) is the 

same set 𝐶, which guarantees that there is one coin in it. After the weighing operation, an 

unambiguous solution to equation (2) is obtained. Hence, 𝐹(1) = 1. 

Let 𝑘 > 1. Let us consider set 𝐶’ = 𝐶 ∪ {𝑥}, where 𝐶 is a set containing 𝑘 − 1 coins and 

𝑥 is any coin. We start by weighing set 𝐶′ to obtain its weight (1 step), and then we 

decompose it into sets 𝐶 and {𝑥}.  A solution for 𝐶 is obtained in 𝐹(𝑘 − 1) steps. A solution 

for {𝑥} is obtained in one step (𝐹(1) = 1). If so, then a solution for 𝐶’ is obtained in 𝐹(𝑘 −
1) + 2 steps.  

We obtain a recursive relationship: 

  {
𝐹(1) = 1                                     
𝐹(𝑘) = 𝐹(𝑘 − 1) + 2,   𝑘 > 1

                                       (6) 

the only solution to which is the function: 

  𝐹(𝑘) = 2 × 𝑘 − 1                                                   (7) 

This means that, for any set 𝐶, it is enough to perform 2 × 𝑘 − 1 weighings to determine 

its contents. 

In this context, the contents of set 𝐶 can always be determined by partitioning it into 

single-element subsets (containing one coin each) and weighing each of these subsets. Such 

an algorithm will hereinafter be referred to as the brute force algorithm. 

3. THE UNIFORM DECOMPOSITION ALGORITHM 

In this section, an algorithm is presented that can determine the contents of set 𝐶 in fewer 

steps than the brute force algorithm. The algorithm in question involves partitioning set 𝐶, 

in each step, into two parts of similar weight (as opposed to the brute force algorithm, which 

partitions the set into a single-element subset and the remaining elements).  

Let 𝐽 be a set of values of 𝑀 for which equation (2) has one solution: 𝐽 = {𝑀: 𝑝(𝑀) =
1}. The idea of the proposed algorithm is to decompose set 𝐶 until the weights 𝑀 of all its 

subsets belong to set 𝐽. By meeting this condition, one can determine the contents of set 𝐶 

(sequence 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛)) as the sum of the solutions for each of its subsets. The 

algorithm consists of the following steps:  
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1. Perform the weighing operation on 𝐶. 

2. If 𝑀 ∈ 𝐽, record the sequence (𝑎1, 𝑎2, … , 𝑎𝑛) which is the solution. 

3. If 𝑀 ∉ 𝐽, partition set 𝐶 into subsets 𝐶1 and 𝐶2 with weights 𝑀1 and 𝑀2 so that 
|𝑀1 −𝑀2| is as small as possible. Repeat the procedure for 𝐶1 and 𝐶2. 

4. Add up the recorded sequences – the result of this operation is the content of 𝐶. The sum 

of sequences 𝐴1 = (𝑎1,1, 𝑎1,2, . . . , 𝑎1,𝑛) and 𝐴2 = (𝑎2,1, 𝑎2,2, . . . , 𝑎2,𝑛)  is defined as 

sequence (𝑎1,1 + 𝑎2,1, 𝑎1,2 + 𝑎2,2, . . . , 𝑎1,𝑛 + 𝑎2,𝑛). 

To be able to use this algorithm, one must identify the set 𝐽. One way to determine this 

set is to use the generating functions method and analyze the coefficients of the following 

polynomial (Pólya, 1956). 

𝑇(𝑥) = ∏
1

1−𝑥𝑤𝑖
=𝑛

𝑖=0 (1 + 𝑥𝑤1 +⋯+. . . ) × (1 + 𝑥𝑤2 + 𝑥2×𝑤2+. . . ) × (. . . ) × (1 +

𝑥𝑤𝑛 + 𝑥2×𝑤𝑛+. . . ) = ∑ 𝑝(𝑀) × 𝑥𝑀𝑀∈ℕ                              (8) 

Polynomial 𝑇(𝑥) describes all possible combinations of coins for the given set 𝑊. Each 

of the factors given by (1 + 𝑥𝑤𝑖 + 𝑥2×𝑤𝑖+. . . ) specifies the possible number of occurrences 

in set 𝐶 of a coin weighing  𝑖. Set 𝐶 may contain zero coins of weight  𝑖 (as represented 

by the free term 1), one coin weighing  𝑖 (as represented by the term 𝑥𝑤𝑖 ), two coins 

weighing  𝑖 (as represented by the term 𝑥2×𝑤𝑖), etc. In general, 𝑘 coins of weight  𝑖 are 

represented by the term 𝑥𝑘×𝑤𝑖. The product of the factors (1 + 𝑥𝑤𝑖 + 𝑥2×𝑤𝑖+. . . ) ×

(1 + 𝑥𝑤𝑗 + 𝑥2×𝑤𝑗+. . . ) for two different coin weights ( 𝑖 and  𝑗), represents the 

admissible combinations of the occurrences of these coins in set 𝐶. For instance, zero coins 

of either weight are represented by the product of the terms (1 × 1); one coin of weight  𝑖 

and zero coins of weight  𝑗 are represented by the product (𝑥𝑤𝑖 × 1); and two coins, each 

of which is a different weight, are represented by the product (𝑥𝑤𝑖 × 𝑥𝑤𝑗 = 𝑥𝑤𝑖+𝑤𝑗). The 

exponent in each term of such a product represents the value 𝑀 of the total weight of this 

combination. 

The expression obtained after simplifying 𝑇(𝑥) contains information about the number 

of solutions to equation (4) for a given 𝑀. The coefficient at 𝑥𝑀 is equal in value to the 

function 𝑝(𝑀). To determine the set 𝐽 (which is a condition for using the proposed 

algorithm), it is enough to test all the values of 𝑀 ∈ ℕ and choose those, for which 𝑝(𝑀) =
1. Because there are potentially infinitely many different values of 𝑀, the problem of 

determining set 𝐽 is undecidable in the general case. 

An example of a function 𝑝(𝑀) is shown in Fig. 4. Such a function grows exponentially 

in approximation (Matiyasevich, 1993). Numerical determination of the curve 𝑝(𝑀) is 

subject to some inaccuracy. The number of the terms of each of the factors 

(1 + 𝑥𝑤𝑖 + 𝑥2×𝑤𝑖+. . . ) must be limited to a certain finite value (which means some possible 

combinations of weights  𝑖 are ignored). As a result of this simplification, "distortions" start 

to appear on the curve as the value of 𝑀 increases – some combinations of coin weights are 

not taken into account when the expression 𝑇(𝑥) is simplified, and thus the value of 𝑝(𝑀) 
is lowered. In such a case, the simplified curve takes the shape of a bell curve, which is 

different from the theoretical shape of the exponential curve (Fig. 4). The accuracy of the 

results of the discussed algorithm depends on the correct determination of set 𝐽, whose 

contents depend on the accurate determination of the value of 𝑝(𝑀).  
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It is worth emphasizing that at suitably low values of 𝑀 ≤ 𝑀𝑚𝑎𝑥, the value of 𝑝(𝑀) can 

be determined without error. It can therefore be assumed that set 𝐽 is accurate for a set of 

coins whose weight does not exceed a certain value 𝑀𝑚𝑎𝑥.  

Let 𝑝𝑘(𝑀) be a function corresponding to a function 𝑝(𝑀) for a polynomial 𝑇(𝑥) limited 

to 𝑘 terms in each factor, i.e.: 

𝑇𝑘(𝑥) = (1 + 𝑥𝑤1 + 𝑥2×𝑤1+. . . +𝑥(𝑘−1)×𝑤1) × (… ) × (1 + 𝑥𝑤𝑛 +

𝑥2×𝑤𝑛+. . . +𝑥(𝑘−1)×𝑤𝑛) = ∑ 𝑝𝑘𝑀∈ℕ (𝑀)𝑥𝑀                                                                      (9) 

 

Fig. 4. Curves of functions 𝒑(𝑴) and 𝒑𝒌(𝑴) for 𝑾 = {𝒘 =  𝟓 ,𝒘 = 𝟑  ,𝒘𝟑 = 𝟑𝟗𝟒,𝒘𝟒 = 𝟓  ,𝒘𝟓 =
𝟓  ,𝒘𝟔 = 𝟔𝟓𝟒} and 𝒌 = 𝟑   

It is worth noting that the polynomial 𝑇𝑘(𝑥) contains all representations of the sets 

containing fewer than 𝑘 coins (the product of the factors given by (1 + 𝑥𝑤𝑖 +

𝑥2×𝑤𝑖+. . . +𝑥(𝑘−1)×𝑤𝑖) takes into consideration all combinations of coins the total number 

of which is less than 𝑘). This fact can be used to obtain a given degree of curve accuracy, as 

described by Theorem 2: 

Theorem 2. Let  𝑚𝑖𝑛 = 𝑚 𝑛( 1,  2,  3, . . . ,  𝑛). For each 𝑀 < 𝑘 ×  𝑚𝑖𝑛, functions 

𝑝𝑘(𝑀) and 𝑝(𝑀) are equal: 𝑝𝑘(𝑀) = 𝑝(𝑀).  
Proof. Let 𝐶 be a set with a weight 𝑀 for which the above Theorem is false. This means 

that 𝑀 < 𝑘 ×  𝑚𝑖𝑛, 𝑝𝑘(𝑀) ≠ 𝑝(𝑀). Since 𝑝𝑘(𝑀) considers all sets containing fewer than 

𝑘 coins, it follows that |𝐶| ≥ 𝑘 – the value of 𝑀 described in the above assumption must be 

the weight of a set containing 𝑘 or more coins. 

Let 𝐶𝑧 denote any set containing exactly 𝑧 coins, and let 𝑀𝑧 denote the weight of this set. 

Note that 𝑀𝑧 ≥ 𝑧 × 𝑚𝑖𝑛 (the weight of the set must be greater or equal to the weight of 𝑧 

lightest coins).  

𝐶 = 𝐶𝑘 ∪ 𝐶𝑙 , 𝑙 ≥ 0 and 𝑘 + 𝑙 = |𝐶|. Weight 𝑀𝑘 satisfies the inequality 𝑀k ≥ 𝑘 × 𝑚𝑖𝑛. 

Weight 𝑀𝑙 satisfies the inequality 𝑀𝑙 ≥ 𝑙 ×  𝑚𝑖𝑛 ≥ 0 ×  𝑚𝑖𝑛 ≥ 0. The weight of the set 𝐶 

therefore satisfies the following condition: 

𝑀 = 𝑀k +𝑀𝑙 ≥ 𝑘 ×  𝑚𝑖𝑛 + 0 ≥ 𝑘 ×  𝑚𝑖𝑛                           (10) 
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This condition contradicts the previously accepted assumption. Since a contradiction was 

obtained, it can be concluded that there does not exist a value of 𝑀 < 𝑘 ×  𝑚𝑖𝑛 for which 

𝑝𝑘(𝑀) ≠ 𝑝(𝑀), which concludes the proof. 

The theorem can be used to determine such a value of weight 𝑀𝑚𝑎𝑥 for which set 𝐽 will 

consist of correct elements (weights 𝑀, for which 𝑝(𝑀) = 1). To ensure that 𝑝𝑘(𝑀) =
𝑝(𝑀), 𝑀 ∈ {0, 1, … ,𝑀𝑚𝑎𝑥}, one should find a 𝑘 for which the inequality 𝑀𝑚𝑎𝑥 < 𝑘 ×  𝑚𝑖𝑛 

is satisfied. After transformation, the inequality is given by 𝑘 >
𝑀𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
. It is equivalent to 

inequality 𝑘 > ⌊
𝑀𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
⌋, and since 𝑘 is a natural number, the smallest number that satisfies 

this inequality is 𝑘 ≥ ⌊
𝑀𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
⌋ + 1. 

Example  

Let 𝑊 = { 1 = 2, 2 =  , 3 = 5} and let the weight of the set of coins 𝐶 not exceed 

𝑀𝑚𝑎𝑥 = 11. To obtain accurate results under this constraint, the factors of the polynomial 

𝑇(𝑥) must contain at least 𝑘𝑚𝑎𝑥 = ⌊
𝑀𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
⌋ + 1 = ⌊

11

2
⌋ + 1 = 6 terms. The polynomial 𝑇6(𝑥) 

is then given by: 

𝑇6(𝑥) = (1 + 𝑥2 + 𝑥4 + 𝑥6 + 𝑥8 + 𝑥10) × 
(1 + 𝑥3 + 𝑥6 + 𝑥9 + 𝑥12 + 𝑥15) × 
(1 + 𝑥5 + 𝑥10 + 𝑥15 + 𝑥20 + 𝑥25) = 

1𝑥0 + 0𝑥1 + 1𝑥2 + 1𝑥3 + 1𝑥4 + 2𝑥5 + 2𝑥6 + 2𝑥7 +  𝑥8 +  𝑥9 + 4𝑥10 + 4𝑥11 +⋯ 

The values of 𝑝(𝑀) obtained from the  polynomial 𝑇6(𝑥) are summarized in Table 1:  

Tab. 1. Values of 𝒑(𝑴)𝒙𝑴 obtained from the polynomial 𝑻𝟔(𝒙) 

𝑴 0 1 2 3 4 5 6 7 8 9 10 11 … 

𝒑(𝑴) 1 0 1 1 1 2 2 2 3 3 4 4 … 

 

The set of values 𝑀 for which equation (4) has one solution (𝑝(𝑀) = 1) is, in this case,  

𝐽 = {0,2, ,4}.  
Once set 𝐽 has been determined, one can determine the contents of set 𝐶 weighing 𝑀 <

𝑀𝑚𝑎𝑥. For example, let 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5} and  (𝑐1) =  (𝑐2) =  (𝑐3) =  (𝑐4) =
2, (𝑐5) =  . The steps of the algorithm are listed below and shown in graphical form in 

Fig. 5: 

 

Step 1  The result of the weighing operation 𝐶 is 11. Since 11 ∉ 𝐽 (there is more than 

one solution), 𝐶 has to be partitioned. The decomposition yields sets 𝐶1
′ = {𝑐1, 𝑐2, 𝑐3} and 

𝐶2
′ = {𝑐4, 𝑐5}. 

Step 2  The result of the operation of weighing 𝐶1
′ is 6. 6 ∉ 𝐽, so the set needs to be 

partitioned. The decompositions yields sets 𝐶1,1
′ = {𝑐1, 𝑐2} and 𝐶1,2

′ = {𝑐3}.  

Step 3  The result of the operation of weighing 𝐶1,1
′  is 4. 4 ∈ 𝐽 – there exists only one 

combination with a weight of 4. The solution, in this case, is the sequence 𝐴1,1
′ = (2,0,0). 

Step 4  The result of the operation of weighing 𝐶1,2
′  is 2. 2 ∈ 𝐽 – this value has only one 

solution, which is the sequence 𝐴1,2
′ = (1,0,0). 

Step 5  The result of the operation of weighing 𝐶2
′  is 5. 5 ∉ 𝐽, so the set is subjected to 

decomposition. As a result of decomposition, sets 𝐶2,1
′ = {𝑐4} and 𝐶2,2

′ = {𝑐5} are obtained. 
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Step 6  The result of the operation of weighing 𝐶2,1
′  is 2 – this value has only one 

solution, which is the sequence 𝐴2,1
′ = (1,0,0). 

Step 7  The result of the operation of weighing 𝐶2,2
′  is   – this value also has only one 

solution, which is 𝐴2,2
′ = (0,1,0). 

Since the solutions for the sets created as an effect of the decomposition of 𝐶 are known, 

they can be added together to obtain the solution for 𝐶: 𝐴 = 𝐴1,1
′ +𝐴1,2

′ + 𝐴2,1
′ + 𝐴2,2

′ =
(2,0,0) + (1,0,0) + (1,0,0) + (0,1,0) = (4,1,0). The sequence obtained in this way reflects 

the contents of set 𝐶. 

 

Fig. 5. A diagram showing an interpretation of the operation of the uniform decomposition algorithm 

based on the given example 

 

Fig. 6. A diagram showing an interpretation of the operation of the brute force algorithm based on the 

given example 
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It is worth noting that the decomposition tree for the brute force algorithm (Fig. 6) has 

more nodes than the uniform decomposition algorithm – the brute force algorithm will 

always partition set 𝐶 into single elements, which is not always the case with the uniform 

decomposition algorithm (Fig. 5). According to equation (6), the number of steps of the brute 

force algorithm is 𝐹(5) = 9. 

4. QUANTITATIVE EXPERIMENTS 

The algorithm was tested by implementing it in the Python environment. During the 

experiments, the number of weighings (steps) performed by the brute force algorithm and 

the uniform decomposition algorithm were examined. Sets 𝑊 were randomly generated. It 

was assumed that in the successive experiments, the elements of set 𝑊 took values from the 

given set 𝑄 (the potential weight values were narrowed down to a certain range). Test cases 

(sets 𝐶 to be subjected to decomposition) were also randomly generated. The successive sets 

𝐶 contained 𝑘 = 2,  , … ,99 coins; for each value of 𝑘, 10 test cases were generated. 

Fig. 7 shows a comparison of the results of the operation of the two algorithms for the 

case discussed in the previous examples - 𝑊 = {251,  22,  94, 500, 521, 654} (weights of 

currently circulating Polish coins). The black dots represent the number of weighings 

(number of algorithm steps) performed using the uniform decomposition algorithm, and the 

red dots indicate the number of weighings performed using the brute force algorithm. As it 

can easily be seen, the proposed decomposition algorithm requires fewer steps than the brute 

force algorithm. In an extreme case, for 𝑀 = 45000 (the weight of the coins is 450 𝑔), the 

number of weighings needed to identify the contents of set 𝐶 totals 50 (the brute force 

algorithm requires 200 weighings to compute the same).  

Figs. 8 through 10 show the results for the randomly generated sets 𝑊. Table 2 shows 

the experiment result for 𝑘 = 2,  , … ,29 for ten sets 𝑊. 

 

Fig. 7. Experiment result for 𝑾 = { 𝟓 , 𝟑  , 𝟑𝟗𝟒, 𝟓  , 𝟓  , 𝟔𝟓𝟒} 
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Fig. 8. Experiment result for 𝑾 = {  𝟔 ,   𝟕𝟕,  𝟖 𝟒,  𝟕𝟗 ,  𝟔𝟔 , 𝟗𝟑𝟒,  𝟔𝟔𝟑,   𝟒 , 𝟗𝟖𝟗,  𝟗𝟗𝟕}, 𝑸 =
{    ,     ,… ,     } 

 

Fig. 9. Experiment result for 𝑾 = {𝟑 𝟕, 𝟑𝟑𝟗, 𝟑𝟔 , 𝟑𝟑𝟑, 𝟒𝟕 , 𝟑 𝟑, 𝟒𝟗𝟓, 𝟑  , 𝟑  , 𝟑𝟕𝟒, 𝟑𝟗𝟔, 𝟑𝟗𝟑, 
𝟑𝟓 , 𝟒𝟔𝟒, 𝟑  , 𝟒 𝟑, 𝟑𝟒 , 𝟑𝟒𝟓, 𝟑𝟒𝟕, 𝟒𝟒𝟑}, 𝑸 = {𝟑  , 𝟑  ,… , 𝟓  } 

 

 

Fig. 10. Experiment result for 𝑾 {  𝟖,  𝟒𝟓,  𝟑 ,  𝟒𝟔,  𝟑𝟒,   𝟔,    ,    ,   𝟑,   𝟕,   𝟓,   𝟔,   𝟓,   𝟔,
   ,  𝟑𝟑,  𝟒𝟗,  𝟒 ,   𝟒,    }, 𝑸 = {   ,    ,… , 𝟑  } 
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Tab. 2. Results of quantitative experiments 

|𝑾| 𝒘𝒎𝒊𝒏 𝒘𝒎𝒂𝒙 𝒛/𝒑 𝜶𝒛 𝜶𝒑 𝜹 

19 230 1652 1.24737 1.89423 1.63935 0.13456 

17 206 292 1.33367 1.89423 1.56272 0.17501 

17 248 1284 1.51192 1.89423 1.40958 0.25586 

14 207 496 1.84531 1.89423 1.14452 0.39579 

16 410 1883 1.87511 1.89423 1.12072 0.40835 

10 331 891 2.37705 1.89423 0.91151 0.5188 

8 344 2064 2.52351 1.89423 0.91016 0.51951 

9 228 693 2.53848 1.89423 0.84585 0.55346 

7 398 1097 3.05425 1.89423 0.74172 0.60843 

6 227 1365 3.25092 1.89423 0.73668 0.61109 
|𝑊| – number of items in the set of weights 𝑊;  𝑚𝑖𝑛 – the lowest weight in 𝑊;   𝑚𝑎𝑥 – the highest weight 

in 𝑊; 𝑧/𝑝 – mean quotient of the numbers of weighings performed by the brute force algorithm and the uniform 

decomposition algorithm; 𝛼𝑧 – mean number of weighings per coin performed by the brute force algorithm; 𝛼𝑝 

– mean number of weighings per coin performed by the uniform decomposition algorithm; 𝛿 – relative difference 

between 𝛼𝑧 and 𝛼𝑝, calculated using the equation 𝛿 =
𝛼𝑧−𝛼𝑝

𝛼𝑧
. The higher the value of 𝛿, the greater the advantage 

of the uniform decomposition algorithm. 

 

The experiments show that the uniform decomposition algorithm has an advantage over 

the brute force algorithm. For each examined set 𝑊, the novel approach proposed here 

turned out to be more efficient in determining the contents of set 𝐶. However, it can be 

observed that the degree of advantage of the uniform decomposition algorithm over the brute 

force algorithm varies depending on the size of set 𝑊. The degree of advantage is described 

numerically in Table 2 in column 𝑧/𝑝 (as a quotient of the number of steps performed by 

the tested algorithms) and column 𝛿 (as a difference in the number of steps per one coin). 

Both of these values increase as the size of set 𝑊 becomes smaller. This means that the 

proposed algorithm is more efficient for smaller sets 𝑊. It is worth noting that the size of 

set 𝑊 is not the only factor influencing the degree of advantage; the uniform decomposition 

algorithm is more efficient for sets 𝑊 which contain values from a wider range (Table 2). 

5. AN APPLICATION EXAMPLE 

One of the potential applications of the algorithm is a step in an authentication procedure. 

Let us assume that Alice and Bob share a password that has been securely generated 

using, for instance, the Diffie-Hellman method based on elliptic curves (Haakegaard & 

Lang, 2015). After some time, an attempt at communication is made, but Alice is not sure 

whether it is actually Bob who is trying to communicate with her. She can verify Bob's 

identity using the following procedure: 

1. Give "Bob" instructions on how to convert the shared password into a set of weights 𝑊, 

without broadcasting the password itself (e.g. take groups of 4 bytes from the ASCII 

code representation of the password and treat each group as a weight). 
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2. Send "Bob" a solution 𝐴 (in vector form) of an instance of the coin weighing problem 

with the previously established weights. 

3. Both parties add up the solutions for 𝐴 to a weight 𝑀 using their weights and decompose 

it. 

4. "Bob" says how many weighings were performed in his decomposition. 

a. If this number is not the same as Alice's, the procedure terminates: "Bob" has failed 

the authentication. 

b. If the number of weighings is the same, the test can be repeated, with Bob's 

credibility increasing with each test performed. 

 

Fig. 11. Example of a successful authentication procedure 

 

 

Fig. 12. Example of a failed authentication procedure 
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The test utilizes the low computational complexity of the decomposition procedure and 

the high computational complexity of the process of generating set 𝐽, which is necessary to 

perform a decomposition consistent with Alice's decomposition. If "Bob" is the real Bob, 

then he should know the correct set of weights and should be able to answer Alice's queries 

correctly every time. A potential attacker will have difficulty completing the procedure 

because: 

− The set of weights is not provided in the public channel, and so, the attacker can, at 

best, try to deduce its contents, 

− Set 𝐽 can vary dramatically even if the changes made to the set of weights are small. 

Also, generating a new set 𝐽 from scratch is computationally burdensome. 

− Bob's response can in fact be any natural number, but only one response allows 

positive authentication, effectively defending the procedure against brute-force 

attacks. If the answer to the query is a natural number between 1 and 𝑘, and 𝑛 queries 

have been sent, then, for 𝑘 = 50 and 𝑛 =  , the probability of the successful 

authentication of a user who does not know the weights is 
1

𝑘𝑛
=

1

125000
. 

− The number of decomposition steps as a function of weight 𝑀 is highly susceptible to 

changes in set W (see Figs. 7–10), and the adjacent values of such a function differ 

from each other in an unpredictable way (which can be seen in Figs. 7–10 as a vertical 

"scatter" of values). This means that the knowledge of the number of steps for a certain 

𝑀𝑖 does not allow one to infer the number of steps for another 𝑀𝑗. 

The above observations show the attractiveness of the potential use of the proposed 

procedure in authentication systems. The procedure is computationally simple for a party 

that knows the correct set of weights, and the chances of a potential attacker guessing the 

correct answers decrease dramatically with each repeated query. 

An example of an implementation of the protocol described above may look as follows: 

1. Let us consider two parties, “Alice” and “Bob”, analogous to the description at the 

beginning of the chapter. 

2. First, both parties agree upon a secret (for example – a password). Let the password be 

the ASCII encoded string “di0ph4nt1n3”. This string is then converted to a set of integer 

values according to some rule – let us assume we take chunks from the password the 

size of a byte (8 digits of the binary representation of the password) and interpret them 

as an integer value (Fig. 13). The distinct obtained values form a set 𝑊. 

 

Fig. 13. Mapping a character string “di0ph4nt1n3” to a set 𝑾 
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3. Once the secret is established, both parties run a routine to generate a set 𝐽 from the 

previously computed values in 𝑊. In the presented example, we obtain a 51-element set 

𝐽 = {48, 49, 51, 52, 96, 97, 98, 99, 101, 102, 10 ,… } (Fig. 14). 

 

Fig. 14. The set 𝑾 and its corresponding set 𝑱 

4. Then, Alice may send queries to Bob consisting of a solution 𝐴 for the coin bag problem. 

Both parties sum the solution to a weight 𝑀 and compute its decomposition (Fig, 15). 

For example - query is the solution [2, 6, 2, 0, 2,  , 0,  , 2, 0], corresponding to the weight 

𝑀 = 1558. Its uniform decomposition (as per the algorithm described in the article) has 

33 weighings, and that is the response that Bob would have to send to Alice to 

successfully complete the authentication challenge. 

 

Fig. 15. The procedure of authentication between Alice and Bob after generating 𝑱 

5. The number of weighings in the decomposition is then counted by both parties, and Bob 

sends the result to Alice. 

6. The authentication challenge is successful, if and only if the results match. Then, Bob 

successfully proves to Alice that he possesses the password without revealing it (in 

plaintext or encrypted) over the network. 
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The proposed method allows parties to authenticate over a connection without revealing 

the shared secret. The entire procedure flow is shown in Fig. 16. As described earlier, the 

procedure is not computationally intensive and is reasonably secure. With refinement, it may 

present a plausible alternative to other methods (Azrour et al., 2021; Mumtaz et al., 2019) 

concerning such authentication or, for example, key agreement. Due to its lower 

computational costs for each query, the presented method may prove useful, for example, 

on devices with limited computational power - especially compared to schemes based on 

modular exponentiation, which are taxing on the central processing unit (Jonsson & 

Tornkvist, 2017). 

 

Fig. 16. The authentication procedure based on the coin bag problem, with details abstracted away 

6.  CONCLUSIONS 

The article describes the so-called coin bag problem, which is analogous to the problem 

of solving linear Diophantine equations. In this article, a model of this problem was 

formulated, and it was shown that it is not always possible to determine a solution for the 

original version of the problem. Therefore, a variant of the problem was proposed, for which 

there is always a solution. The "uniform decomposition" heuristic was presented, which 

allows to determine the solution using fewer steps than the brute force algorithm. Tests were 
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also carried out which confirmed the advantage of the proposed algorithm over the brute 

force one. Additionally, a cryptographic procedure was presented that utilizes the properties 

of the examined problem for the purpose of authenticating parties in an IT system. 

Prospects for further research include: 

− The determination of an appropriate metric describing set 𝑊 that would allow one to 

accurately predict the degree of advantage of the uniform decomposition algorithm 

over the brute force algorithm;  

− Analysis of the impact of various ways of partitioning the set 𝐶 on the efficiency of 

the algorithm (e.g. dividing the set into more than two parts). 
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