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Abstract 

In this study, the authors present and scrutinize two deep learning models designed for 

predicting the states of epilepsy patients by utilizing extracted data from their brain's 

electrical activities recorded in electroencephalography (EEG) signals. The proposed 

models leverage deep learning networks, with the first being a recurrent neural network 

known as Long Short-Term Memory (LSTM), and the second a non-recurrent network 

in the form of a Deep Feedforward Network (DFN) architecture. To construct and 

execute the DFN and LSTM architectures, the authors rely on 22 characteristics 

extracted from diverse EEG signals, forming a comprehensive dataset from five 

patients. The primary goal is to forecast impending epilepsy seizures and categorize 

three distinct states of brain activity in epilepsy patients. The models put forward yield 

promising results, particularly in terms of classification rates, across various 

preceding seizure timeframes ranging from 5 to 50 minutes. 

1. INFORMATION 

The Epilepsy is a prevalent neurological disorder that impacts the central nervous system, 

leading to seizures. It is a widespread neurological condition globally. The disorder disrupts 

the typical neural activity, giving rise to unusual sensations, seizures, muscle spasms, and 

loss of consciousness. Predicting epilepsy seizures becomes imperative in aiding both 

patients and specialists in managing this condition effectively. A crucial preliminary step 

involves registering the electrical activity in various regions of the brain. The primary tool 

for this purpose is the electroencephalograph (EEG), which facilitates the collection of brain 

electrical activities. EEG is going more importance in the diagnosis of epilepsy.  It provides 

valuable information about brain function, helping clinicians and researchers understand 

brain dynamics and identify abnormalities. EEG recording based on the placement of a set 

of electrodes using the 10-20 system ensures that data is comparable across different sessions 

and subjects, providing a reliable basis for clinical diagnosis. Electrode placement and 

selection depend on the specific clinical or research needs. There are mainly two methods: 

Scalp (Non-invasive) Approach: Electrodes are placed on the scalp to measure the brain's 

electrical activity from its surface. Invasive Approach: Electrodes are placed under the skin 

or directly on the brain. These provide high-resolution recordings and are essential for 

detailed insights into brain activity in specific medical and research applications. 
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However, the visual analysis and examination of EEG takes time and may be ineffective 

for patients. Consequently, automatic analysis of the EEG signal can facilitate the diagnosis 

of epilepsy and helps the specialist to understand the contents of EEG signals. The analysis 

of EEG is crucial for understanding brain function. Consequently, various studies have been 

conducted on EEG processing, including the work presented in (Krukow et al., 2019), and 

the seizure review by (Yindeedej et al., 2024), and the correlation between scalp and invasive 

EEG detailed in (Ramantani et al., 2016). Additionally, (Ramgopal et al., 2014; Willems et 

al., 2019) provide comprehensive descriptions of EEG analysis, as well as its application in 

prediction and detection. 

On the other hand, several works have been paid to automatic seizure prediction, using 

machine learning tools. The process of prediction consists of two stages: The first step is 

features extraction. It's an important step in the pattern recognition process, which aims to 

describe the behavior of EEG signals and transform them into numerical vectors of pertinent 

data or pieces of information. To get the best classifier, the feature extraction step should 

decrease the original signal to a smaller dimension than possible without losing pieces of 

information necessary for prediction. The second stage is mandatory based on the results of 

the first one, concerning this, a machine learning tool provides a set of methods able to 

perform classification or prediction tasks, of two or multi classes. The prediction of epilepsy 

seizures can be approached as a binary problem when the objective is to anticipate the onset 

of a seizure and as a multiclass problem when aiming to identify various states of an epilepsy 

patient. Numerous methods have been put forth to enhance the efficacy of automatic seizure 

prediction, including neural networks (NN), support vector machines (SVM), decision trees, 

among others.  

The prediction of epilepsy seizures based on the EEG is considered a classification task, 

with two classes or plus. In this context, many works are proposed for automatic prediction 

from EEG signals such as the work cited in (Tzallas et al., 2009; Tzallas et al., 2007), in both 

works, authors use the time-frequency analysis to classify EEG Signals for epilepsy seizure 

detection. Moreover, authors in (Tzallas et al., 2007) are considering the features extracted 

as inputs in an artificial neural network architecture for seizure classification. In reference 

(Martinez-del-Rincon et al., 2017), the authors introduce an innovative method for 

automated epilepsy seizure detection, incorporating two key elements: the application of 

non-linear classifiers using the "kernel trick" and the introduction of a Bag-of-Words model 

for deriving a non-linear feature representation from the input data. On the other hand, the 

authors referenced in (Li et al., 2020) utilize a convolutional network featuring three 

convolution blocks to extract pertinent features from EEG signals. These extracted features 

serve as input for the Nested Long Short-Term Memory (NLSTM) model, aiming to uncover 

the inherent temporal dependencies within EEG signals.  

In (Vani et al., 2019), the authors put forth a pioneering deep-learning approach designed 

for the detection of seizures in pediatric patients. This method relies on classifying 

multichannel EEG signals, Leveraging the automatic feature learning abilities of a neural 

network-based classifier integrated with a two-dimensional deep convolution auto-encoder. 

Moving on to (Kim et al., 2020), the authors offer a comprehensive review of Epileptic 

Seizure Detection. Through this review, their aim is to provide a panoramic perspective on 

recent signal processing methods and classification algorithms used for detecting and 

categorizing seizures. In Behbahani et al. (2014), the authors introduce an algorithm geared 

towards detecting the presence of epilepsy seizures in heart rate variability. This algorithm 

https://www.tandfonline.com/author/Behbahani%2C+Soroor
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encompasses feature extraction and classification, incorporating ten features derived from 

time and frequency domain analysis, along with nonlinear features extracted from EEG 

signals. The features that were extracted, as described in the previous context, were 

employed as the input for a multilayer perceptron neural network. Many other applications 

of neural networks, especially deep learning, are proposed in the literature, such as works in 

(Kumar et al., 2019; Hu et al., 2021; Yoki Donzia & Kon Kim, 2019). A state of the art of 

non-invasive method is presented in (Yuan et al., 2021). 

This paper introduces two effective architectures rooted in deep learning neural networks. 

These architectures leverage features extracted from EEG signals to enhance the 

performance of seizure prediction systems for epilepsy patients. The objective is to develop 

two deep learning models to improve the quality of epileptic seizure prediction, considering 

the richness of EEG data and the proven theoretical and historical performance of neural 

networks in classification tasks.  

The subsequent sections of the paper are structured as follows: Section two provides a 

concise overview of deep learning types. Section three introduces the concepts of epilepsy 

seizure prediction and feature extraction from EEG signals. Following that, Section four 

thoroughly discusses the proposed architectures, namely DFN and LSTM. Section five is 

dedicated to the implementation part. The paper then concludes with the presentation of 

experiment results, followed by a final section summarizing the findings and the conclusions 

reached. 

2. DEEP LEARNING 

Deep learning (DL) is a specialized field within the broader domain of machine learning, 

characterized by neural networks with multiple hidden layers. In practice, deep learning 

involves using neural networks with an increased number of these hidden layers. These 

networks aim to emulate the functioning of the human brain, where data inputs, weights, and 

biases collaboratively contribute to the accurate recognition, classification, and description 

of classes within the provided data. Notably, deep learning requires less pre-processing 

compared to some other classification algorithms. Rooted in the concept of artificial neural 

networks, deep learning models are inspired by the organizational structure of the human 

brain's connectivity, particularly drawing inspiration from the arrangement found in the 

visual cortex.  

Both architectures feedforward and recurrent neural networks are generally proposed in 

deep learning. Deep learning architectures are structured with distinct layers, including an 

input layer, hidden layers (which can be recurrent or non-recurrent), and an output layer. 

Within each layer, nodes are interconnected with others in the subsequent layer, and each 

connection is associated with a weight. Additionally, each node incorporates an activation 

function that influences the output. The output of individual nodes is transmitted to the next 

layer of the network. There are popular architectures within deep learning, such as 

Convolutional Neural Networks (CNNs), designed for tasks like image recognition, and 

Long Short-Term Memory (LSTM) networks, suitable for handling sequential data and 
preserving contextual information over extended periods. These architectures have proven 

effective in various applications, showcasing the versatility of deep learning in handling 

complex tasks across different domains. 

https://pubmed.ncbi.nlm.nih.gov/?term=Yuan%20H%5BAuthor%5D
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Fig. 1.  Standard architecture of deep Feedforward Network 

2.1. Deep Feedforward Network 

The Deep Feedforward Network (DFN) outlined in this paper adheres to a feedforward 

architecture, structured with consecutive layers. The network initiation involves the input 

layer, followed by a series of blocks. Each block comprises a fully connected layer, a 

normalization layer, and an activation layer. Towards the conclusion of the architecture, an 

output block is incorporated, encompassing a fully connected layer coupled with a 

classification layer. This DFN is specifically crafted to autonomously and flexibly acquire 

spatial hierarchies of features by means of a backpropagation algorithm. The architecture 

iteratively consists of repeated layers, as illustrated in Figure 1, portraying the network's 

capability to learn and represent intricate patterns in the input data. 

2.2. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an advanced type of neural network designed to 

address the challenge of capturing and preserving both short-term and long-term 

dependencies in sequential data. By splitting the signal input into these two parts, LSTMs 

can selectively focus on capturing short-term variations through the hidden state while 

simultaneously preserving and utilizing important long-term information through the cell 

state. This capability makes LSTMs well-suited for tasks involving sequential data, where 

maintaining context and understanding dependencies over time is crucial for accurate 

predictions or classifications. 

The architecture of an LSTM involves three crucial components, allowing it to effectively 

manage information over extended periods: 

− Input Stage: In first stage, the input signal is divided into two significant components. 

The first component focuses on capturing important short-term information, achieved 

through the hidden state. The second component concentrates on retaining crucial 

long-term information, accomplished through the cell state. 

− Hidden State and Cell State: The hidden state in an LSTM captures short-term 

information and is updated dynamically as the network processes sequential data. 

However, the cell state, on the other hand, serves as a memory unit for preserving 

long-term information. 
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− Three-Gate Mechanism: LSTMs utilize a unique three-gate mechanism to control the 

flow of information. 

1. Forget Gate: Determines which information from the cell state should be 

discarded or retained. 

2. Input Gate: Decides what new information should be added to the cell state. 

3. Output Gate: Determines the next hidden state based on the current input and the 

updated cell state. 

Typically, LSTM networks consist of an input layer, followed by hidden recurrent layers 

called LSTM Layer, and an output layer, for a more detailed description of CNN, see 

(Nielsen, 2015; Awad & Khanna, 2015; Webb & Copsey, 2002; Boualoulou et al., 2023). 

3. EPILEPSY SEIZURE PREDICTION 

Absolutely, the ability to predict epilepsy seizures in advance is crucial for enhancing the 

management and quality of life for individuals with epilepsy. Automatic seizure prediction 

machines aim to forecast seizures before they occur. Various machine learning algorithms 

are employed to analyze different biometric signals in order to achieve this predictive 

capability. These algorithms leverage features extracted from biometric signals, such as 

electroencephalography (EEG) data, to discern patterns and trends associated with 

impending seizure, typical two-step process in building automatic seizure prediction 

systems:  

− In the first step, relevant features are extracted from biometric signals, particularly 

electroencephalograph (EEG) signals. These features serve as the input for 

subsequent classification. The goal is to capture key characteristics in the signal data 

that can be indicative of impending seizures. 

− Following feature extraction step, a classifier model is developed to predict seizures. 

This model is typically derived from machine learning methods, which learn patterns 

and relationships within the extracted features. The model is trained on a labeled 

dataset known as the training data, which consists of instances where the presence or 

absence of seizures is known. Once trained, the model's performance is evaluated on 

a separate dataset called testing data to ensure its generalizability. 

This paper focuses on computing features from EEG signals and constructing two 

classifier models: the first is based on LSTM network and the second is created by the 

proposed deep feedforward network (DFN), and the last is based on, in the context of a 

supervised learning problem.  

In this study, the authors focus on the epilepsy seizures problem and define three distinct 

classes to represent various states of epilepsy patients:  

− Pre-seizure: This class likely corresponds to the period leading up to an epileptic 

seizure. 

− Seizure: This class represents the actual occurrence of an epileptic seizure. 

− After-seizure: The after-seizure class may encompass the postictal phase, which is 

the period following the seizure. 
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3.1. Feature extraction from EEG signal 

The acquisition of brain electrical activity through Electroencephalography (EEG) stands 

as one of the most valuable and information-rich sources in epilepsy research. Recognized 

for its real-time data provision and excellent temporal resolution, EEG plays a crucial role 

in the diagnosis and classification of epilepsy seizures. It remains one of the primary 

diagnostic tests for epilepsy, offering unparalleled insights into the dynamic electrical 

patterns of the brain.  

While electroencephalography (EEG) provides valuable data for analyzing and 

interpreting brain activity, the practicality of prolonged wear of EEG electrodes can be 

challenging for patients. This challenge is especially significant in scenarios where 

continuous monitoring over an extended period is necessary. 

It's important to mention that this study utilizes features extracted from EEG signals 

captured by electrodes placed on the scalp for the purpose of distinguishing between 

different classes of epilepsy. In this work, the uathors use 22 features defined in the EPILAB 

project of the Center for Informatics and Systems (Klatt et al., 2012; Teixeira et al., 2011), 

they suggest a standardized set of features that have been identified and defined for epilepsy 

research. These features likely encompass various aspects of the EEG signal that are relevant 

for differentiating between different states or phases of epilepsy, such as pre-seizure, seizure, 

and after-seizure. Three parameters are determined during the feature extraction step:  

− Window size is fixed at 5 min. 

− Different selected prediction seizure times (periods) is made:  50 min, 30 min, 10 

min and 5 min. 

− Selection of electrodes or channels, this operation is an important step for feature 

selection. 

3.2. Electrodes selection 

The selection of electrodes or channels is indeed a crucial step in the preprocessing phase 

of analyzing EEG signals. This operation plays a significant role in feature selection and can 

impact the quality of the features extracted for subsequent analysis. In this study, electrodes 

were selected according to three hypotheses: 

− Electrodes of highest frequency: In this case, we are specifically focusing on 

electrodes that provide signals of high frequency for each patient, as indicated in 

Table (1). This approach suggests a targeted analysis of high-frequency components 

in the EEG signals captured by these electrodes. Electrodes capturing high-frequency 

signals are likely to be sensitive to rapid changes and oscillations in neural activity. 

This focus can be relevant for capturing specific patterns associated with certain 

types of seizures or neurological events. 

− Electrodes of the left part: Choosing electrodes based on their lateral position (left 

part of the head) suggests an interest in analyzing neural activity specific to the left 

hemisphere. This can be relevant for studying lateralized effects or understanding 

how epileptic activity manifests in particular brain regions. Focusing on specific 

lateral regions may help in localizing seizure activity and understanding the 

asymmetry or lateralization of epilepsy-related neural patterns. By concentrating on 
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even-numbered electrodes on the left side of the head can contribute to a focused 

investigation into left-hemispheric neural activity and its role in epilepsy. 

− Electrodes of the right part: In this case, we are choosing electrodes positioned on 

the right part of the head for each patient, this selection criterion is based on odd-

numbered electrodes. This can be important for understanding lateralized effects and 

patterns associated with epilepsy in right brain region. 

4. PROPOSED MODELS 

In this section, the authors present two deep learning models to predict epilepsy seizures. 

The models in their study are developed to predict epilepsy seizures, treating the task as two 

distinct problems: 

− Binary Classification for Ongoing Seizure Prediction: The first problem involves 

binary classification, specifically predicting the ongoing seizure. In this case, it's 

framed as distinguishing between the pre-seizure class and the rest of the classes of 

the patient. The pre-seizure class represents the period leading up to a seizure, and 

the objective is to accurately identify instances when a seizure is imminent. 

− Multiclass Classification for Other Seizure States: The prediction of three brain states 

of the patient as a multiclass problem, specifically classifying instances into three 

distinct brain states of the patient: pre-seizure, seizure, and after-seizure. The two 

proposed models for this task are the Deep Feedforward Network (DFN) and the 

Long Short-Term Memory (LSTM) Network. 

4.1. Deep Feedforward Network 

This section presents a deep feedforward network (DFN) architecture, in effect, based on 

the classic feedforward network with a fully connected layer, a normalization layer, an 

activation layer, and a backpropagation algorithm. The implemented architecture used is 

shown in figure 2. In practice, DFN architecture is composed of an input layer represented 

as a vector comprising 22 features multiplied by the selected number of channels for each 

patient, followed by two blocks, each one consisting of fully connected layers, a 

normalization layer, and an activation layer with a ReLU function. ReLU is given by the 

formula: 

𝑅𝑒 𝐿 𝑈(𝑧) = {
𝑧 𝑧 > 0
0 𝑧 ≤ 0

         (1) 

Ultimately, the output layer comprises k neurons, where k equals the number of classes 

(k=2) in the binary case., and k=3 in the multiclass case with three classes). Followed by a 

softmax layer, with the function given in next formula: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
𝑒𝑧

∑ 𝑒𝑧𝑗
𝑗

         (2) 



116 

 

Fig. 2. Deep Feedforward Network (DFN) proposed 

4.2. LSTM Network 

The LSTM architecture proposed in this work is composed of an input layer composed 

of (22 features*the number of channels selected), followed by two LSTM layers of 100 cells, 

and finally an output layer of k classes. The architecture implemented is shown in figure 3. 

 

Fig. 3. LSTM architecture proposed 

5. IMPLEMENTATION 

In this section, the authors present the architectures (models) implemented according to 

two cases: in the first, each patient is considered alone (individual models), in the second 

case, all patients are processed together (global models). 

5.1. Individual Models 

In this section, the authors present deep learning models to predict epilepsy seizures for 

each patient i.e. each patient has an individual models. These models are treating the task as 

binary and multiclass problems: a binary classification problem (pre-seizure class versus the 

rest of the classes of the patient). The prediction of three brain states of the patient as a 

multiclass problem (classification with three classes: pre-seizure, seizure, after-seizure). 
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5.2. Global Models 

In this section, we present two deep learning models to predict epilepsy seizures for all 

patients. Global models are developed to predict the ongoing seizure for all patients (as a 

binary classification problem: pre-seizure class versus the rest of the classes of the patient), 

and to predict three brain states of all patients (as a multiclass problem with three classes: 

pre-seizure, seizure, after-seizure). Due to the large number of channels of all patients, we 

decided to select only highest frequency channels. The table (1) presents highest frequency 

channels for all patients. 

Tab. 1. Selection of electrodes capturing the highest frequency signals 

Patient Highest frequency electrodes 

Patient 1 AF7, F7, T7, P7, F9, T9, FT7, FT9, TP7 

Patient 2 AF7, F7, T7, P7, F9, T9, FT7 

Patient 3 FP2, F8, T8, P8, AF8, F10, T10, FT8 

Patient 4 AF7, F7, T7, F9, T9, FT7, FT9 

Patient 5  F7, F3, T7, C3, P7, P3, F9, T9, FT7 

5.3. Evaluation 

In the evaluation step, statistical measures for evaluating the classification models are 

implemented such as accuracy and F1-score. Firstly, accuracy is indeed a commonly used 

metric to assess the overall performance of a classification model. It’s given by the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 
             (3) 

While the accuracy is calculated by summing up the number of correct predictions across 

all classes and dividing it by the total number of predictions, so it provides an overall 

measure of the model's correctness.  

The F1-score is a measure used to evaluate the performance of a classification model. It 

considers both precision and recall to provide a single metric that balances the two. It is the 

harmonic mean of precision and recall. It is given by the formula: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
                   (4) 

Where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
             (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
            (6) 

To perform our architectures LSTM and DFN, we are used a dataset consists of 5 patients 

from the EEG dataset of Coimbra university.  The 22 features extracted are used to construct 

the 8 architectures as follow (see table 2). 



118 

Tab. 2. Models implemented 

Patient Binary classification Multiclass classification 

Individual 
Binary-DFN Multiclass-DFN 

Binary-LSTM Multiclass-LSTM 

Global 
G-Binary-DFN G-Multiclass-DFN 

G-Binary-LSTM G-Multiclass-LSTM 

 

All the experiments were run on standard Intel i3 CPU 3.40 with 4 Go memory running 

the Windows 7 operating system, and with MATLAB 2020b version. In experiments 

reported below, we used 60% of data for training and 30% for testing the proposed models. 

The dataset used in this paper is belong from EPILAB project of Center for Informatics and 

Systems for Informatics and Systems, Department of Informatics Engineering, University 

of Coimbra, Portugal (Juliane Klatt and all. 2012).  

6. RESULTS AND DISCUSSION 

The following tables (3 and 4) summarize the best-obtained results by the Binary-DFN, 

Multiclass-DFN, Binary-LSTM, and Multiclass-LSTM architectures respectively, for each 

patient with the highest frequency channels. In both tables, the "Binary case" column 

presents the accuracy of ongoing seizure prediction considering 4 pre-seizure periods. 

However, in the " Multiclass case " column, we give the best prediction accuracy of the three 

classes considered in this work (pre-seizure, seizure, and after-seizure). 

Tab. 3. Results of prediction obtained by individual DFN model, for binary and multiclass cases 

Patient Pre-

seizure 

Binary classification Multiclass classification 

Accuracy (%) Accuracy (%) F1-score (%) 

Patient1 

50 89.58 94.09 84.68 

30 93.67 96.60 88.30 

10 97.59 98.77 93.93 

5 98.68 99.33 96.16 

Patient 2 

50 96.54 98.22 95.33 

30 98.15 99.06 97.10 

10 99.38 99.69 98.89 

5 99.75 99.88 99.15 

Patient 3 

50 94.73 97.27 90.11 

30 96.77 98.35 93.46 

10 98.97 99.48 97.25 

5 99.51 99.76 98.03 

Patient 4 

50 96.47 98.20 94.11 

30 97.71 98.84 96.36 

10 99.09 99.54 98.64 

5 99.53 99.77 99.09 

Patient 5 

50 96.52 98.21 93.12 

30 97.85 98.90 95.42 

10 99.20 99.60 98.20 

5 99.57 99.78 98.90 
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Tab. 4. Results of prediction obtained by individual LSTM model, for binary and multiclass cases 

Patient Pre-seizure Binary classification Multiclass classification 

Accuracy (%) Accuracy (%) F1-score (%) 

Patient1 

50 77.63 87.41 85.83 

30 85.28 92.06 87.68 

10 94.63 97.24 92.90 

5 97.27 98.61 95.49 

Patient 2 

50 95.22 97.55 95.04 

30 97.13 98.55 96.95 

10 99.04 99.52 98.86 

5 99.52 99.76 99.34 

Patient 3 

50 90.61 95.07 90.18 

30 94.12 96.97 93.65 

10 98.04 99.01 97.57 

5 99.02 99.51 98.55 

Patient 4 

50 94.26 97.04 94.07 

30 96.55 98.25 96.33 

10 98.85 99.42 98.63 

5 99.43 99.71 99.21 

Patient 5 

50 92.62 96.17 92.28 

30 95.42 97.66 95.08 

10 98.35 99.17 98.01 

5 99.12 99.56 98.78 

 

On the other hand, the best results obtained by different architectures, specifically G-

Binary-DFN, G-Multiclass-DFN, G-Binary-LSTM, and G-Multiclass-LSTM, as presented 

in tables 5 and 6. These tables likely provide a comprehensive overview of the performance 

of these architectures across all patients with the use of the highest frequency channels 

Tab. 5. Results of prediction obtained by global G-DFN model, for binary and multiclass cases 

Patient Pre-seizure Binary classification Multiclass classification 

Accuracy (%) Accuracy (%) F1-score (%) 

All Patients 

50 94.83 97.34 89.47 

30 96.98 98.47 90.13 

10 98.99 99.49 92.38 

5 99.49 99.74 95.26 

Tab. 6. Results of prediction obtained by global LSTM architecture, for binary and multiclass cases 

Patient Pre-seizure Binary classification Multiclass classification 

Accuracy (%) Accuracy 

(%) 

F1-score (%) 

All Patients 

50 82.66 90.48 82.48 

30 88.88 94.11 85.93 

10 97.26 98.61 90.19 

5 98.62 99.30 93.27 
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As illustrated in tables 3, 4, 5 and 6 above the accuracy is increases while we are close to 

the seizure instance. As a global vision, the results obtained are good and competitive. We 

note that all results presented in this paper are obtained with the highest frequency channels. 

An accuracy ranging from 81% to 89% for the global models is indeed a promising and 

encouraging result, especially considering the heterogeneity of data across various patients. 

On the other hand, Figures 4 and 5 below show the variation of accuracy with different 

previous seizure periods, for each patient. These figures present the prediction of the ongoing 

seizure by our proposal architecture DFN and LSTM network, in the binary classification 

case. Figures 6 and 9 show a comparison between DFN and LSTM for patient 1.  Figures 7 

and 8 present the variation of accuracy with different previous seizure periods, obtained by 

DFN and LSTM respectively. 

 

Fig. 4. Variation of accuracy for 5 patients, to predict the ongoing seizure by DFN architecture, with 50 

min, 30 min, 10 min, and 5 min as previous time duration 

 

Fig. 5. Variation of accuracy for 5 patients, to predict the ongoing seizure LSTM network, with 50 min, 

30 min, 10 min, and 5 min as previous time duration 
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Fig. 6. Comparison of accuracy obtained by the two architectures DFN and LSTM, to predict the 

ongoing seizure, for patient 1, with different previous time duration 

 

Fig. 7. Variation of accuracy for 5 patients, to predict three states about seizure, by DFN architecture, 

with 50 min, 30 min, 10 min, and 5 min as previous time duration 

 

Fig. 8. Variation of accuracy for 5 patients, to predict three states about seizure, by LSTM architecture, 

with 50 min, 30 min, 10 min, and 5 min as previous time duration 
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Fig. 9. Comparison of accuracy obtained by the two architectures DFN and LSTM, to predict the 

ongoing seizure, for patient 1, with different previous time duration 

 

Fig. 10. Comparison of accuracy and F1-score obtained by global LSTM architecture, to predict the 

ongoing seizure before 50 min, for 5 patients 

 

Fig. 11. Comparison of accuracy and F1-score obtained by global DFN architecture, to predict the 

ongoing seizure before 50 min, for 5 patients 

70

75

80

85

90

95

100

50 min 30 min 10 min 5 min

LSTM Multiclass case

DFN Multiclass case

70

75

80

85

90

95

100

5 min 10 min 30 min 50 min

Accuracy

F1-score

80

82

84

86

88

90

92

94

96

98

100

5 min 10 min 30 min 50 min

Accuracy

F1-score



123 

7. CONCLUSION 

In this work, the authors proposed and implemented two deep neural network 

architectures named: Deep Feedforward Network (DFN) and long short-term memory 

(LSTM) architecture, in the subject to predict the ongoing seizures. Before the training of 

the proposal architectures, the selection of channels (electrodes) is necessary in order to 

extract the best features. After training and testing our models, we can conclude that:  

− Achieving accuracy levels in the range of 81% to 89% by global models, and 85% to 

99% by individual models, is generally considered good in many machine learning 

applications. It indicates that presented models are performing well in distinguishing 

between different states of epilepsy for diverse patients. 

− There is no distinction in results between the left and right positions of the electrodes, 

as they yield similar outcomes. 

− Choosing electrodes based on their sufficient highest frequency.   

− In terms of training parameters, we conclude that two or three blocks of layers are 

sufficient, moreover the number of neurons in each layer can be defined according 

to the number of the inputs. Also, there are no difference between solvers used for 

training neural network: SGDM, RMSProp and ADAM. 

− The DFN model has proven to be effective in predicting epilepsy seizures, it may 

indeed have potential applications in other domains, such as face recognition and 

speech classification. 

Finally, this comparative analysis of the different architectures (DFN versus LSTM, 

Binary versus Multiclass, Individual versus global) provides insights into their relative 

strengths and weaknesses. This information can guide future research and development in 

seizure prediction systems. 
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