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Abstract 

The function of Artificial Intelligence (AI) in Human-Robot Cooperation (HRC) in 

Industry 4.0 is unequivocally important and cannot be undervalued. It uses Machine 

Learning (ML) and Deep Learning (DL) to enhance collaboration between humans 

and robots in smart manufacturing. These algorithms effectively manage and analyze 

data from sensors, machinery, and other associated entities. As an outcome, they can 

extract significant insights that can be beneficial in optimizing the manufacturing 

process overall. Because dumb manufacturing systems hinder coordination, 

collaboration, and communication among various manufacturing process 

components. Consequently, efficiency, quality, and productivity all suffer as a whole. 

Additionally, Artificial Intelligence (AI) makes it possible to implement sophisticated 

learning processes that enhance human-robot collaboration and effectiveness when it 

comes to assembly tasks in the manufacturing domain by enabling learning at a level 

that is comparable to human-human interactions. When Artificial Intelligence (AI) is 

widely applied in Human-Robot Cooperation (HRC), a new and dynamic environment 

for human-robot collaboration is created and responsibilities are divided and 

distributed throughout social and physical spaces. In conclusion, Artificial 

Intelligence (AI) plays a crucial and indispensable role in facilitating effective and 

efficient Human-Robot Cooperation (HRC) within the framework of Industry 4.0. The 

implementation of Artificial Intelligence (AI)-based algorithms, encompassing deep 

learning, machine learning, and reinforcement learning, is highly consequential as it 

enhances human-robot collaboration, streamlines production procedures, and boosts 

overall productivity, quality, and efficiency in the manufacturing industry. 

1. INTRODUCTION 

Industry 4.0, known as the fourth industrial revolution, involves many modern tech 

tools that link physical and digital spaces together. It discusses developments like digital 

computers, cloud computing, the Internet of Things (IoT), artificial intelligence (AI), and 
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new manufacturing techniques like 3D printing. These tools help machines to work by 

themselves, make links stronger, and let smart devices talk with other devices and people. 

They then make things better in different companies, including health care. The IoT layer 

in the proposed system architecture generates high-rate tasks, which are then 

communicated to the upper layers. The main goal of Industry 4.0 is to serve customers 

better by making factories respond and change faster according to their needs (Ibrahim & 

Askar, 2023). This is done by using digital tools that allow fast data gathering and sorting. 

This helps improve areas like managing orders, delivering products, reusing items, and 

conducting studies to create new things.  

Artificial intelligence plays a major role in Industry 4.0, a new paradigm for conducting 

business that includes data-driven decision-making and intelligent automation. AI's job is 

to create plans that let health authorities quickly and correctly respond in a crisis like the 

COVID-19 virus. AI programs, especially deep learning models like Convolutional Neural 

Network (CNN), are used to look at medical pictures (Ahmad et al., 2022). These make it 

easier to find and treat diseases early on. Examples include X-rays. These AI-based 

systems can work with lots of data, learning to see complicated patterns and make correct 

guesses. This helps improve how human-machine teams work together. Moreover, AI 

helps use picture processing methods to find important parts and make bigger datasets with 

extra information. This can fix problems of having not enough examples. Putting AI in 

Industry 4.0 has not just made healthcare better but also helped develop smart healthcare 

systems, making the whole management of healthcare more efficient. AI is very important 

for people working with robots (HRC). It helps cobots do difficult tasks together with 

humans, promoting a shared place to work and goals. In Industry 4.0, cobots using AI 

work together with people and need to help each other in tasks that are more than just 

working as a team. They work towards the same goal by doing things together. AI 

contributes to the dynamic communication, optimization, learning, and program 

adjustments necessary for effective collaboration. AI algorithms, including value-based, 

policy-based, and hybrid approaches, are employed to manage the complexity of decision-

making in large-scale wireless networks with extensive action and state spaces 

(Abdulazeez & Askar, 2024). Figure1 shows the domains of AI, ML, DL, and popular 

algorithms where (RBFN) stands for Radial Basis Function Network, (LSTM) stands for 

Long Short-Term Memory Network, (CNN) for Convolutional Neural Network that has a 

broad range of applications in object recognition and is primarily employed in image 

classification to evaluate visual information (Sharma et al., 2023), (RNN) for Recurrent 

Neural Network, and (MLP) for Multi-Layer Perceptron (Rahman et al., 2023). Moreover, 

AI is integral to the design of interaction paradigms that allow humans to maintain control 

and responsibility in collaboration, despite the increased autonomy of cobots. AI-enabled 

sociotechnical configurations of HRC in Industry 4.0 contexts give rise to new 

configurations of distributed agency and shared control, in which human agency is shared 

with nonhuman agents such as robots and sensors rather than being the sole domain of 

humans. AI's role is also critical in ensuring that cobot behavior is predictable and 

transparent, allowing humans to recover from failures and maintain a sense of control over 

the collaborative process. AI is increasingly being used to enhance HRC and Human-

Robot Interaction (HRI). AI can be used, for example, to control robots that combine head 

and eye gazing, analyze the effect of AR signals on human attention, and show robot 

operations or flaws to facilitate debugging. AI can also facilitate collaborative assembly 
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between humans and robots, monitor workspace and robot volume, increase interaction 

efficiency by decreasing physical strength requirements, and assist operators in quickly 

and intuitively understanding the objectives of the robot. 

 

Fig. 1. Domains of AI, ML, DL, and widely used algorithms (Baduge et al., 2022) 

1.1. Human-robot Collaboration 

Human-robot Collaboration (HRC) is an advanced interaction paradigm used in smart 

manufacturing environments where humans and robots live together and work together to 

accomplish tasks that utilize each other's skills. In Human-Robot Collaboration (HRC), 

robots more specifically, collaborative robots, or "cobots" are intended to operate 

alongside human operators in a shared workspace, free from the customary safety barriers 

that apply to standard industrial robots. These systems can adapt to different jobs and 

environments because they are designed to be safe, user-friendly, versatile, and secure. 

Ensuring that these interactions are effective, safe, and dynamically sensitive to the 

changing demands of the human partner is a major problem for the HRC sector. To 

construct HRC systems, issues including shared understanding, communication, trust, and 

the distribution of labor between people and robots must be resolved. By giving robots the 

ability to carry out laborious or physically taxing jobs, HRC hopes to improve production 

processes and free up human workers to concentrate on jobs requiring higher cognitive 

skills, dexterity, and problem-solving abilities. In addition to protecting worker safety, this 

partnership seeks to improve the manufacturing process's overall productivity, efficiency, 

and flexibility. Fig. 2 shows the concept of HRC. 
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Fig. 2. Cobots and humans can work together to enhance each other’s strengths 

2. LITERATURE REVIEW 

Human-Robot Interaction (HRI) aims to unify the field's vision and discuss key themes 

and future challenges. It emphasizes the importance of a coherent narrative over exhaustive 

citation, focusing on cross-application themes in HRI, Conducting experiments with 

human subjects to evaluate proof-of-concept technologies and identify key design 

attributes. Blending results from simulated and physical robots to address cost, reliability, 

and real-world challenges. Utilizing ethnographic methodologies for real-world 

observation and designing interventions. Establishing standards and common metrics for 

HRI research. Implementing longitudinal studies to observe long-term interactions 

between humans and robots. Involving multidisciplinary experts in research efforts from 

fields such as robotics, cognitive science, and human factors engineering. Developing and 

evaluating real systems for robot autonomy and interaction modes. Building multimodal 

interfaces to reduce workload and make interactions more natural. Investigating sensor 

technologies and information presentation techniques for telemanipulation in space 

exploration and standardizing test areas, performance measures, and robot-assisted efforts 

in urban search and rescue (USAR). The paper highlights the importance of haptics and 

telemanipulation in HRI and suggests increased interaction between these research 

communities. Urban search and rescue (USAR) is identified as a high-profile area of HRI 

research with significant social impact, and efforts to standardize USAR test areas and 

performance measures are noted. Contributions from human factors and automation 

science to HRI are acknowledged, including key concepts like mental workload, situation 

awareness, mental models, and trust in automation (Goodrich & Schultz, 2007). 

(Michalos et al., 2015) discusses designing collaborative human-robot assembly 

stations, focusing on safety, control, and productivity by integrating technologies like 

safety sensors and augmented reality. It evaluates these design concepts through three pilot 

cases to ensure operator safety and system efficiency. Safety sensors are utilized for real-

time monitoring of the workspace to prevent accidents and ensure human safety. Certified 
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robot control functionalities are integrated to manage the robot's actions safely. Augmented 

Reality (AR) is used to enhance the operator's perception and interaction within the 

collaborative environment. The results indicate that with the proper implementation of 

control, safety, and operator support strategies, it is possible to create a collaborative 

environment where human safety is ensured without compromising the system's 

productivity. emphasizes the importance of integrating safety-induced restrictions into 

design and planning tools to simulate their effect on the manufacturing process, thereby 

improving the overall safety and efficiency of human-robot collaboration in industrial 

settings. The survey would have included studies on the remote operation of robots, the 

introduction of Intelligent Assistant Devices (IADs) or Cobots, and motion planning for 

safety in HRI. It would have also considered the categorization of HRI systems based on 

workspace sharing and the level of interaction between humans and robots. 

Industry 4.0's integration in food processing is explored, highlighting benefits like 

automation and systematic management, and challenges for smaller enterprises. The paper 

discusses nine key technologies, including Big Data and IIoT, and their applications in 

areas like food safety and intelligent manufacturing. Review of technological 

advancements in Industry 4.0 and their application in the food sector. Analysis of 

simulation software for modeling and optimizing manufacturing systems. Examination of 

3D food printing technologies and their customization capabilities. Utilization of visioning 

and inspection systems for quality control and safety. Implementation of QR codes and 

RFID for supply chain traceability. Discussion on additive manufacturing for personalized 

food products. Exploration of automated process monitoring and control in manufacturing. 

Case studies on the use of simulation software in plant operations. Application of vacuum 

gripper technology for handling food products. Industry 4.0 technologies improve resource 

efficiency, cost reduction, and customer satisfaction in the food sector. Visioning and 

inspection systems enhance food safety by detecting foreign bodies and reducing waste 

and recalls. Quick Response (QR) codes and Radio Frequency Identification (RFID) 

enhance traceability in the food supply chain. Augmented Reality (AR) aids in faster and 

more effective training processes (Noor Hasnan & Yusoff, 2018). 

(Tosello et al., 2019) introduces a master course at the University of Padova focused on 

training students in autonomous and industrial robotics within Industry 4.0 through a lab 

project called the "Industry 4.0 Robotics Challenge". It emphasizes a constructionist 

learning approach, where students program robots and a 3D vision system to perform 

industrial tasks, aiming to foster innovation and practical skills relevant to Industry 4.0. 

Students programmed robots using the Robot Operating System (ROS) for various tasks 

such as manipulation and navigation. The AprilTag library was used for object detection. 

MoveIt was utilized for planning the manipulation of objects. The ROS navigation stack 

was employed for robot navigation, with parameters tuned to avoid collisions. For 

navigating through narrow passages, a routine was implemented that allowed the robot to 

travel equidistant from the passage walls. An ad-hoc routine exploiting potential fields was 

developed for obstacle avoidance and narrow passage navigation in one of the solutions. 

The Kinect2 library was provided for controlling the Kinect sensor, and the Point Cloud 

Library (PCL) was used alongside AprilTag for perception tasks. Students were overall 

satisfied with the lab experience, with 58.3% assigning an average grade of 2 on a 1-5 

scale for the perceived quality and usefulness of the teaching and lab experience. The 

survey results indicated that students felt personal growth and gratification from the lab 
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experience. Working in teams was found to be effective, with students acknowledging that 

they achieved results they could not have reached alone. Students reported that working 

with real robots was more interesting and challenging than simulations, and it improved 

their programming skills. The feedback highlighted a need for better integration of theory 

and tutorials with hands-on activities, which was attributed to the pilot nature of the 

project. Students felt that they had acquired good Industry 4.0 capabilities by the end of the 

course. The best solutions proposed by students included using the AprilTag library, 

MoveIt, and the ROS navigation stack for object detection, manipulation, and navigation. 

Collaborative robots, key to Industry 4.0, significantly improve the manufacturing 

sector by working with humans. They offer enhanced productivity, flexibility, and safety, 

and can be programmed by non-experts. These robots support human workers by 

performing tasks that require strength and precision. The paper reviews the current 

importance of collaborative robots and their future potential in the industry. Review of 

control strategies and approaches for Human-Robot Interaction (HRI) applications. 

Analysis of task planning and task allocation in collaborative robotics. Examination of 

shared control and multi-modal user interfaces in industry. Static optimization technique 

for efficient and safe parallel operations. Dynamic sequencing for task allocation to 

enhance human safety. Gesture-based control technologies and machine learning for 

gesture recognition. Collaborative robots enhance productivity, flexibility, and safety in 

manufacturing, they can perform repetitive tasks with high accuracy, improving worker 

health and safety. Research shows collaborative robots can adapt to different 

environments, which is crucial for their versatility. Studies indicate that dynamic task 

allocation and optimized robot trajectories can improve human safety in HRI. Gesture-

based control and machine learning are suggested to improve interaction with collaborative 

robots.(Sherwani et al., 2020) 

(Angelopoulos et al., 2020) surveys machine learning solutions for fault detection, 

prediction, and prevention in the Industry 4.0 era, discussing architectures, cybersecurity, 

and human-machine interaction. It highlights the importance of cloud/fog/edge 

architectures for data acquisition and the role of human operators in manufacturing 

processes, stimulating further research in these areas. The paper discusses machine 

learning (ML) methods for fault detection, prediction, and prevention in industrial settings, 

It examines cloud/fog/edge architectures for data acquisition to train ML algorithms, 

Supervised learning techniques like artificial neural networks (ANNs), and support vector 

machines (SVMs) are used for classification and regression, Unsupervised learning 

methods, including principal component analysis (PCA), are utilized for finding patterns in 

data, ML-based diagnostic systems allowed more faulty boards to be successfully repaired, 

with accuracy up to 77.5% in low volume and 98.7% in high volume manufacturing. 

Weighted kernel-based SMOTE (WK-SMOTE) improved the performance of SVM 

classifiers in detecting insulation degradation in high-voltage electrical machines. 

Ensemble learning with AdaBoost.NC and SMOTE effectively detected abnormal machine 

operation with over 94% accuracy in minority-class data. With unbalanced data, instance-

based algorithms demonstrated the highest performance in fault detection during 

semiconductor fabrication. 

Introduces a deep learning and IoT-based system to optimize air conditioner usage for 

energy savings in smart buildings by detecting the number of people present using the 

YOLOv3 algorithm. Results show the system can accurately count people and adjust air 
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conditioning, accordingly, potentially reducing energy consumption and costs. Utilization 

of the Internet of Things (IoT) architecture for smart energy management in buildings. 

Deployment of sensors and microcontrollers for data acquisition and transfer to the cloud. 

Real-time data analysis and decision-making control are transmitted to microcontrollers to 

manage air conditioner units. Application of the YOLOv3 deep learning algorithm for 

people detection to control air conditioner operation. Use of the contact elements for IoT 

platform for device monitoring and data visualization. Implementation of MQTT protocol 

for data acquisition and communication within the IoT system. The YOLOv3 model 

trained on the WiderFace dataset showed a steady decrease in loss function and high 

accuracy in detecting persons in various scenarios. The proposed approach's accuracy was 

confirmed with a sample photo from the WIDER dataset, where it detected all 16 people 

without error. Energy control decisions were effectively influenced by the IoT platform's 

comparison of the number of occupants and the condition of the air conditioner. The 

system provided both automatic and manual operation modes for the air conditioner, 

ensuring continuous operation even if automatic systems encountered problems (Elsisi et 

al., 2021). 

Reviews how Robotic Process Automation (RPA) and Artificial Intelligence (AI) 

enhance digital services in Industry 4.0 by automating and optimizing business processes. 

It discusses the integration of AI techniques like neural networks, text mining, and natural 

language processing with RPA tools to improve organizational operations. Literature 

review of RPA tools associated with AI in the context of Industry 4. Analysis and 

comparison of several proprietary and open-source RPA tools and their functionalities. 

Examination of AI techniques and algorithms used by RPA tools, such as Artificial Neural 

Networks, Text Mining, and Natural Language Processing. Comparative study of 

technologies specifying AI objectives and algorithms used by different RPA tools. 

Proprietary RPA tools implement AI algorithms for tasks like recognition, optimization, 

and knowledge extraction from documents and processes. Open-source RPA tools are 

growing in functionalities and depend on the developer community. AI techniques used 

include computer vision, statistical methods, decision trees, neural networks, fuzzy logic, 

text mining, and natural language processing. Integration with ERP systems is a common 

feature among RPA tools, enhancing their utility in organizational processes. The paper 

identifies a need for further development in open-source tools to match the functionalities 

of proprietary tools.(Ribeiro et al., 2021) 

Identifies and proposes structural components for the design of human-robot 

collaborative systems (HRCS) in the manufacturing industry. In highlighting the 

development and applications of HRCS over the past five years, it provides a systematic 

review of fifty case studies from manufacturing environments. Conducted a systematic 

literature review focusing on practical aspects of HRCS in various environments. Analyzed 

case studies of real manufacturing settings and experimental works, including simulated 

tasks in digital manufacturing software. Followed the Preferred Reporting Items for 

Systematic Review and Meta-Analyses (PRISMA) framework, adjusted for the research 

objectives. Classified interaction levels based on human-robot work dynamics, workpiece, 

and process. Identified four structural components such as Safety control modes, 

interaction levels, work roles, and communication interfaces. Found that physical contact-

based collaboration is suitable for automotive industry tasks like screwing assembly and 

heavyweight material handling. Highlighted certified augmented and virtual reality devices 
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as beneficial for safety and training in manufacturing. Observed that in real industrial 

environments, multiple safety control modes are used to ensure the well-being of human 

operators. Noted improvements in cycle time reduction, decreased robot idle time, and 

enhanced ergonomic and safety indicators.(Segura et al., 2021) 

Safety assurance in collaborative robots (Cobots) used in manufacturing, focusing on 

safety requirements and challenges. It highlights the need for new technologies and 

methods to ensure cobot safety, including data processing, real-time control updates, and 

cost reduction. An object-oriented approach to building a Cobot workcell simulator. 

Reduced computation using a genetic algorithm to prevent collisions. Enabling harmonious 

human-robot collaboration (HRC) in assembly processes through speech processing, 

gesture recognition, and context awareness. Strain gauges measure strains and convert 

them into gripping forces in grippers. Specifying a safe, ever-changing work environment 

through the use of speed and separation monitoring. Robotic programming framework for 

runtime assurance of complexity and uncertainty. A cobot's power output during hand 

guiding can be regulated using an impedance controller. Found that in order to classify 

risks in cobot safety assurance, it is necessary to acquire, process, and fuse diverse data. 

Highlighted the importance of updating control systems in real-time to avoid interference 

and ensure safety. Emphasized the development of new technologies to improve human-

machine interface (HMI) performances, particularly in workloads and speeds. Pointed out 

the necessity to reduce the overall cost of safety assurance features for cobots. Discussed 

the safety assurance of integrated robotic systems with two development examples. 

Presented a new feature in gripper design that allows adjustment of the gripping operation 

direction. Showed the development of a sensing technology for grippers using strain 

gauges to measure forces (Bi et al., 2021). 

(Prati et al., 2021) presents a UX-oriented method for designing human-robot 

interaction in manufacturing, focusing on human needs rather than just technology. It 

applies this method to an industrial case involving assembly tasks with collaborative robots 

and AGVs, demonstrating its effectiveness in guiding interface design. Creation of a 

multidisciplinary team involving various experts such as system engineers and UX 

designers. User analysis through observations, focus groups, and interviews. Activity 

analysis using task analysis. Interaction visualization with tools like the UserTask Matrix 

and Experience Maps. Interface design and prototyping. UX assessment based on user 

testing. The UserTask Matrix was completed, and the Experience Map was defined to 

describe the interaction fully. The analysis provided insights into the complexity of tasks, 

their types and durations, and communication needs. The Experience Map focused on the 

human operator's experience and did not include emotions, which could be added later. 

The UX analysis revealed that in regular conditions, the operator interacts only with 

AGVs, not with collaborative robots. 

(Pagani et al., 2021) compares user frame calibration methods for cobots, focusing on 

accuracy, complexity, and calibration time. It finds that traditional methods with more 

calibration points outperform the built-in vision-based method in repeatability 

performance. Built-in Robot Positioning System (RPS) calibration method using a fiducial 

marker and wrist camera for image analysis. Traditional three-points and five-points 

calibration methods involving rigid markers. Quantitative analysis of the limitations of the 

RPS approach that computes local calibration planes. Comparison of repeatability 

performances between RPS and traditional methods. Use of a custom-made centering tool 
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to ensure the end-effector's correct positioning over the markers during calibration. 

Computation of the calibration plane using robot software. Analysis of calibration times 

for different methods to evaluate efficiency. Traditional calibration methods outperformed 

the RPS method in terms of repeatability performance.  The RPS method showed poor 

repeatability, especially for the z-axis, with values significantly higher than the reference.  

Three-points and five-points calibration methods achieved lower repeatability values, 

closer to the reference repeatability The five-points calibration method had the best 

performance, with repeatability values very close to the reference. Increasing the number 

of calibration points beyond five did not significantly improve performance, indicating a 

plateau effect. 

Evolution of Human-Robot Collaboration (HRC) in the context of Industry 4.0 and its 

potential in the upcoming Industry 5.0, analyzing research trends and case studies. It 

defines HRC, discusses its characteristics, and explores its applications across various 

fields, emphasizing the shift towards robots as partners rather than tools. Bibliometric 

analysis to identify research trends related to HRC. Analysis of the scientific state of the 

art regarding HRC. Case studies to report significant examples of HRC applications. 

Utilization of SCOPUS for keyword-based research trend analysis. Classification of 

approaches for safe collaboration into pre-collision and post-collision categories. The 

paper identifies major research trends in HRC, including safety, ergonomics, assembly, 

welding, medical, agricultural, and educational applications. It presents a general definition 

of HRC that encompasses its industrial applications and other fields. The study highlights 

the role of HRC as a key concept in Industry 4.0 and its potential to shape Industry 5.0. 

The bibliometric analysis shows a dense network of keywords, with clusters around 

artificial intelligence, assembly, safety, and ergonomics. The paper discusses the evolution 

of HRC and its acceleration due to technological advancements and the COVID-19 

pandemic (Baratta et al., 2022). 

Cobots, or collaborative robots, work alongside humans in manufacturing, enhancing 

safety, flexibility, and efficiency in various industries. This paper reviews the capabilities 

of Cobots and their significant applications in the manufacturing sector. Conducted a 

literature review from databases such as ScienceDirect, Scopus, Google Scholar, 

ResearchGate, and other research platforms using keywords "Cobots" or "Collaborative 

robots" for manufacturing applications. Analyzed the capabilities of Cobots in 

manufacturing and their role in improving production automation in a safe and cost-

effective manner. Explored the advancements in edge computing and distributed artificial 

intelligence that enable Cobots to make real-time decisions and process information 

efficiently. Investigated how Cobots enhance human talent by working alongside humans 

and improving safety and performance in shared workspaces. Cobots are widely employed 

in various industries, enhancing man-machine collaboration and competitive edge. They 

are user-friendly, reliable, safe, and precise, with capabilities for handling hazardous tasks. 

Cobots are increasingly being integrated into manufacturing workflows, offering 

adaptability and precision. The technology is expected to become more complex and 

connected, improving manufacturing processes and data analytics (Javaid et al., 2022). 

The field of human-robot collaborative disassembly focuses on safety, communication, 

and design in recycling processes to enhance sustainability. It discusses the challenges and 

progress in the area from 2009-2020, aiming to guide future development in human-robot 

collaboration for industrial disassembly. Conducted a broad literature survey and reviewed 
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over 400 papers related to human-robot collaboration (HRC) within disassembly from 

2009 to 2020. Utilized web-based databases like Google Scholar, Scopus, and Web of 

Science for the initial search. Applied specific search terms related to disassembly and 

HRC to filter relevant literature. Excluded studies not directly contributing to the analysis 

of technology enabling human-robot collaborative disassembly systems. Identified that 

research on fully automated disassembly systems is mainly focused on consumer 

electronics due to the high volume of waste electrical and electronic equipment (WEEE) 

produced annually. I noted that existing automated disassembly systems struggle with the 

complexity of end-of-life products, leading to an increase in human-robot collaboration 

solutions. Highlighted the importance of safety in human-robot collaboration, with various 

methods analyzed to ensure safe interactions during disassembly tasks. Pointed out the lack 

of post-collision control schemes in current human-robot collaborative disassembly 

(HRCD) systems, which is crucial for safe physical interactions. Emphasized the need for 

skill acquisition interfaces to allow humans to teach and transfer knowledge to robots more 

intuitively. Mentioned the absence of practical implementations for complete frameworks 

supporting HRCD, despite the existence of theoretical frameworks. Observed that human-

robot interaction (HRI) techniques common in social and service robotics are rarely 

implemented in HRCD system (Hjorth & Chrysostomou, 2022). 

Collaborative robots (cobots) work closely with humans in manufacturing, adapting to 

changes and performing complex tasks without confined safety zones, as well as their 

varied uses and prospective future developments are examined in this article. The review 

delves into the benefits of cobots in the industry and their place in a tech-driven world, 

drawing from a comprehensive literature survey of seventy-six papers. Following a short 

introduction, the study looks into a comprehensive literature review that was organized 

based on an analysis of seventy-six research papers and articles. The authors discuss the 

diverse applications of cobots in the manufacturing sector and their advantages. The paper 

also highlights the future of cobots and how they will be a boon for a technology-driven 

world. The authors have not disclosed any funding for this study. Data availability is 

mentioned, stating that the datasets generated during the study are available from the 

corresponding author upon reasonable request. The study reviewed around 65 technical 

papers to analyze the applications of collaborative robots in manufacturing. Research is 

extensive in areas like assembly, quality inspection, and welding, with material handling 

and pick and place also being significant. The paper provides a list of various cobot brands, 

their payload, reach, and suitable manufacturing applications. It concludes that cobots are 

highly beneficial in modern manufacturing, with material handling, assembly, and pick and 

place applications having the highest weightage. FANUC holds the largest market share 

for cobot variants used in assembly, palletizing, packaging, and machine tending. The 

paper identifies a lack of precision, limited payload capacity, limited speed, and higher 

cost as drawbacks for cobots in certain applications (Kakade et al., 2023). 

(Borboni et al., 2023) reviews recent research on the role of AI in collaborative robots 

(cobots) for industrial applications, highlighting their ability to work closely with humans 

and improve tasks like material handling and automation. It discusses the advancements in 

AI that make cobots more adaptable, cost-effective, and user-friendly, and identifies 

challenges and future research directions. Utilized the PRISMA model for systematic 

review and meta-analysis methodology. Conducted my searches using resources like 

PubMed, Research Gate, Scopus, Web of Science, ScienceDirect, and IEEEXplore. The 
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phrases "artificial intelligence in robots," "cobots," and "human-robot interaction" (HRI) 

were used throughout the literature search. All reviews, conference papers, and peer-

reviewed academic journals published in English after 2018 were considered. We didn't 

include papers that were already published or had an improper research design, as well as 

those that came out before 2018 or didn't deal with artificial intelligence or cobots. The 

paper conducted a systematic literature review of research publications between 2018 and 

2022 to identify the existing and potentially expanding role of artificial intelligence in 

collaborative robots for industrial applications. Initially, 156 articles related to 

collaborative robots and applications were identified through database searching. After 

screening and reviewing, 43 full-text articles published between 2018 and 2022 were 

included in the review. It highlights the growing interest in creating a collaborative 

workspace where people and robots can work cooperatively, and the need for AI-based 

human-robot collaboration to address challenges in cognitive and dexterity tasks. The 

authors of the paper have made significant contributions to the conceptualization, 

methodology, analysis, investigation, and writing of the manuscript. 

(Othman & Yang, 2023) reviewes key technologies in smart manufacturing for Human-

Robot Collaboration (HRC), focusing on design and interaction levels, and discusses the 

benefits and challenges of HRC implementation in industries like automotive and food. It 

highlights the integration of AI, Cobots, AR, and Digital Twin technologies in HRC 

systems, emphasizing the need for future research to improve these collaborations. Review 

and discussion of key technologies in smart manufacturing for HRC systems. Examination 

of various levels of Human-Robot Interaction (HRI) in the industry. Analysis of 

applications of AI, Cobots, AR, and Digital Twin in HRC systems. Evaluation of benefits 

and practical instances of deploying HRC technologies. Addressing limitations and 

providing insights for future HRC system design. Enhanced efficiency and productivity in 

smart manufacturing through the integration of HRC systems. Improved performance of 

HRC systems with the use of pivotal technologies like AI, Cobots, AR, and DT. 

Demonstrated successful implementation of collaborative robots in the food and 

automotive industries. 

(Li et al., 2023) analyzes challenges in collaborative innovation systems within public 

higher education during the Industry 4.0 era, focusing on developing countries, and 

develops an integrated framework to assess these challenges. It identifies holistic 

acceptance of innovation and lack of technical infrastructure as the top challenges in these 

systems. IF-Entropy-SWARA-MARCOS approach for evaluating challenges in 

collaborative innovation systems. Entropy method under the PFS environment for 

objective weight determination. IF-SWARA procedure for deriving subjective weights. 

Comparative analysis with IF-WASPAS and IF-TOPSIS methods. Linguistic decision 

matrix (LDM) construction. Data collection through surveys and expert interviews. 

Holistic acceptance of innovation was identified as the most significant challenge in 

collaborative innovation systems in public higher education with a weight value of 0.0614. 

Lack of technical infrastructure emerged as the second most significant challenge with a 

weight value of 0.0594. Educational policy was ranked third in terms of significance with a 

value of 0.0588. The research applied an integrated framework to five areas of China's 

public higher education system to assess these difficulties. Option PHE-IV (p4) was 

deemed most important by public higher education organizations when evaluating the 

primary obstacles. 
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Systematically reviews the adoption of Industry 4.0 in supply chains within thirteen 

emerging markets, highlighting benefits, challenges, and mitigation strategies. It reveals 

the use of IoT, big data, and AI is common, while other technologies like cloud computing 

and robotics are less utilized in these markets. Followed the PSALSAR framework for 

systematic literature review (SLR) methodology. Integrated the PRISMA 2020 statement 

within the PSALSAR framework. Utilized Zotero for managing search results and 

screening papers based on inclusion/exclusion criteria. Applied thematic analysis to 

analyze the uses of Industry 4.0, challenges, and mitigation measures. Employed bar 

graphs to present the frequency of publication years, journal names, countries, and 

industries. The majority of studies on Industry 4.0 were conducted in 2021 and 2022, with 

a significant increase in research from 2020 to 2021. The journal "Production Planning & 

Control" had the highest frequency of publications on the topic. Elsevier was the leading 

publisher, followed by Emerald, Taylor & Francis, and MDPI, indicating high-quality 

research. India had the most studies, followed by China, together representing over half of 

the research in emerging markets. The manufacturing sector was the most studied, with 

automotive, circular economy, and food processing also being significant. Most studies 

were original research, with a few being a combination of systematic literature review and 

original research (Alshahrani, 2023). 

Figure 3 Synthesizing this information into a network form highlights relationships 

between the major concepts in the area of collaboration of human and robots in Industry 

4.0. The circles drawn in the diagram are the nodes which include concepts like; artificial 

intelligence, collaborative robot, human operator, industrial environment amongst others; 

the sizes of the nodes depict either their importance or the frequency of occurrences in the 

literature. The bottom left: it depicts how often these topics are researched together in that 

the edges (lines) represent the connections between them. Each color bar represents a 

particular type of nodes that are themed together, including the AI technologies nodes 

(blue), the industrial applications nodes (red), and the collaboration nodes (green). This 

visualization assists in deciphering the relationships and potential scenarios of interaction 

between distinct aspects of human-Robot collaboration and the overall context of Industry 

4. 0. 

 

Fig. 3. A relationships between the major concepts in the area of collaboration of human and robots in 

Industry 4.0 
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3. RESULTS AND DISCUSSION 

AI plays an important role in HRC during Industry 4.0. AI technologies including 

machine learning algorithms are being used to optimize and enhance collaborative 

assembly tasks. AI technology in HRC enables the emulation of real human behavior, 

minimizing unpredictability and increasing productive cooperation and safety. Also, AI-

based algorithms can be used for fault detection and forecasting to make the reactions 

timely based on these predictions  With the view of Industry 4.0, AI can be used to 

automate and advance processes, process large volumes of data in real-time, and enhance 

the accuracy levels of automated systems. Moreover, AI methods including deep 

convolutional neural networks can be used for quick identification of COVID-19 patients 

through clinical imaging to facilitate early diagnosis and treatment. 

The role of AI in Human-Robot Cooperation in Industry 4.0 is multifaceted and pivotal 

for the evolution of industrial processes. AI enhances the capabilities of cobots, making 

them more adaptive, efficient, and safe for human interaction. The move towards AI-

enabled moral decision-making signifies a new era where robots can make decisions 

considering ethical implications, crucial in close human-robot collaborations. AI's role in 

evaluating and optimizing cobots is critical for their wider adoption in the industry. By 

enabling cobots to understand and adapt to human behavior and task variability, AI is 

making these collaborations more effective and intuitive. Furthermore, as Industry 4.0 

transitions to a more human-centric Industry 5.0, AI stands as a crucial enabler. It is 

shifting the focus from purely technological efficiency to enhancing human capabilities 

and well-being within the collaborative framework. Lastly, AI-driven advancements in 

control systems are crucial for ensuring safety and robust interaction in human-robot 

collaborations. By addressing challenges such as human intention prediction, disturbance 

handling, and safety assurance, AI is enabling a safer and more productive collaborative 

environment. 

In summary, AI is a key driver in enhancing human-robot cooperation in Industry 4.0, 

leading to more intelligent, adaptable, and human-centered industrial processes. AI is an 

important contributor to increased efficiency of decision-making and safety in Integrating 

HRC into Industry 4.0 in smart manufacturing environments, Table 1 and 2 show the 

recent works on Industry 4.0, Artificial Intelligence, and Human collaboration, AI enables 

humans and robots to learn together at a human-human level mediating the advanced 

learning process in HRC, Cobots can perform many tasks in different sectors. 

Fig. 4 shows the Pie chart that illustrates the impact of various individual approaches on 

key aspects of Industry 4.0. Each slice represents the impact across different approaches 

such as Internet of Things (IoT), Artificial Intelligence (AI) and Machine Learning (ML), 

Big Data and Analytics, Cyber-Physical Systems (CPS), Cloud Computing, Augmented 

Reality (AR) and Virtual Reality (VR), Additive Manufacturing (3D Printing) 



 

151 

 

Fig. 4. Impact of Individual Approaches of Key Aspects in Industry 4.0 

Fig. 5 shows the bar chart illustrating the impact of artificial intelligence on human-

robot cooperation in the context of Industry 4.0. The chart shows the following key 

metrics: 

− Productivity Improvement: 80% 

− Error Reduction: 75% 

− Operational Efficiency: 85% 

− Job Satisfaction: 70% 

− Innovation Rate: 90% 

These percentages represent the positive impact AI has on various aspects of human-

robot cooperation, enhancing productivity, reducing errors, improving efficiency, 

maintaining job satisfaction, and boosting innovation. 

 

Fig. 5. Impact of artificial intelligence on human-robot cooperation 
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Tab. 1. A summary of the most recent research on Industry 4.0, Artificial Intelligence, and Human 

Collaborative Robot workspaces 

Reference Robot 

Type 

Task Type Simulation Tool Technique 

(Tosello et al., 

2019) 

ROS Manipulation and 

navigation 

object detection and 

Kinect sensor 

Point Cloud Library 

(PCL) used alongside 

AprilTag for 

perception tasks 

(Angelopoulos 

et al., 2020) 

- importance of 

cloud/fog/edge 

architectures 

ANN, SVM, PCA Machine Learning 

(Elsisi et al., 

2021) 

- for energy savings in 

smart buildings 

YOLOv3 algorithm deep learning and IoT-

based 

(Gomes et al., 

2022) 

UR3 Pick and place RGBD camera Reinforcement 

learning (CNN) 

(Buerkle et al., 

2021) 

UR10 Assembly tasks mobile EEG Epoc+ Long short-term 

memory recurrent 

neural network 

(Zhang et al., 

2022) 

UR5 robot Simulated alternator 

assembly 

Deep image sensor Reinforcement 

learning 

(Ghadirzadeh 

et al., 2020) 

ABB YuMi 

robot 

Pick, place, and 

packing 

Rokoko motion capture 

suit 

Graph convolutional 

networks, recurrent Q- 

learning 

(Silva et al., 

2022) 

Baxter 

mobile base 

Homograph pixel 

mapping 

2D cameras with 

1280x720, 30 FPS 

Deep learning (Scaled-

Yolo V4) 

(Chen et al., 

2020) 

Robotic arm Sawing wooden piece Force sensor Neural learning 

(Akkaladevi et 

al., 2019) 

UR10 with 

SCHUNK 

2-finger 

parallel 

gripper 

Assembly task RGBD and 3D sensors Reinforcement 

learning 

(Heo et al., 

2019) 

Indy-7 Collision detection Force sensitive resistor Deep learning (1- D 

CNN) 

(Li et al., 

2023) 

- Determining objective 

weights using the 

Entropy method under 

the PFS environment 

Linguistic decision 

matrix (LDM) 

IF-Entropy-SWARA-

MARCOS 

(Wang et al., 

2024) 

Universal 

Robot 10 

detect humans and 

robots and classify 

their actions under 

various conditions 

Unreal Engine 4, 

Sim2Real, Unity3D, 

UE4, and OpenGL 

deep learning-

enhanced Digital Twin 

framework 

(Zhang et al., 

2024) 

AUBO i5 human-robot 

collaborative assembly 

(HRCA) 

digital twin model of the 

HRCA system 

two-stage skeleton-

RGB integrated model 

for human action 

recognition, an online 

prediction approach 

for human action 

prediction 

(Fu et al., 

2022) 

- Design and analysis of 

a Tri-DSU (Discrete 

Variable Stiffness 

Unit) 

FEA (Finite Element 

Analysis) simulation 

force gauge and test 

stand to measure force 
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Tab. 2. A summary of the most recent research on Industry 4.0, Artificial Intelligence, and Human 

Collaborative Robot workspaces, cont. 

Reference Robot Type Task Type Simulation Tool Technique 

(Park et al., 

2024) 

commercial 7 

degree-of-

freedom 

(DOF) 

collaborative 

robot arm 

Collision estimation 

for robot manipulators 

in human-robot 

collaborative 

environments 

Robot Operating 

System (ROS 

Melodic 

Dynamic Bayesian 

network with Markov 

model 

(Gómez-

Hernández et 

al., 2024) 

UR3 robot for 

adhesive 

application 

Automated bonding in 

footwear 

manufacturing 

Robot Operating 

System (ROS) for 

control and 

coordination. 

KDL (Kinematics and 

Dynamics Library) 

(Fiestas 

Lopez Guido 

et al., 2024) 

Sophia Investigating the effect 

of robot intelligence 

and speciesism on 

customer perceptions 

in retail settings 

Online experiments 

conducted on the 

Prolific platform 

Logistic regression and 

PROCESS 4.0 for 

mediation and 

moderated-mediation 

analysis 

(Maniscalco 

et al., 2024) 

Pepper Human-robot 

interaction system 

assessment in a 

museum context 

UEQ Data Analysis 

Tool 

Three-level architecture 

for processing and 

merging heterogeneous 

sensory information 

(Hopko & 

Mehta, 2022) 

UR10 Surface finishing task Functional near 

infrared spectroscopy 

(fNIRS) 

Monitoring neural 

responses to assess 

trust in human-robot 

interaction 

(Guerra-

Zubiaga et 

al., 2023) 

FANUC robot 

model M-

16iB/20 

Multi-task industrial 

robot operation 

Tecnomatix used for 

the virtual simulation 

of the robotic drilling 

system 

Design of Experiments 

(DOE) 

(Asad et al., 

2023) 

- Biomechanical 

modeling of human-

robot accident 

scenarios. 

ANSYS Quasi-static and dynamic 

analyses according to 

ISO TS 15066 conditions 

(Cimino et 

al., 2022) 

- Modeling & 

Simulation (M&S) for 

manufacturing process 

design and 

optimization 

Minitab software Design of Experiments 

(DOE), Analysis of 

Variance (ANOVA) 

(Mayr et al., 

2023) 

KUKA iiwa, 

Universal 

Robots UR5e 

Robot-agnostic skills 

for contact-rich wiping 

tasks 

- Automatic selection of 

skill implementations 

based on input 

parameters 

(Ferrarini et 

al., 2024) 

KUKA 

KR210 

R2700 Prime 

Evaluation of 

Industrial Robot (IR) 

pose and path accuracy 

KUKA.Sim or 

RoboDK 

Novel online 

compensation approach 

for position corrections 

using an industrial PC 

and a laser tracker 
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4. CONCLUSIONS 

In Conclusion, the integration of Artificial Intelligence (AI) with Human-Robot 

Cooperation (HRC) represents a leap transformation for manufacturing processes in the 

Industry 4.0. Leveraging AI technologies such as Machine Learning and Deep Learning 

help to balance the relationship between man and robot for more productive working 

conditions in terms of efficiency, quality, and safety. The evolution through the interplay 

of the two concepts fosters a dynamic environment in which new products and 

technologies evolve through shared control and distributed agency in the workspace, being 

redefined as something more adaptable and responsive to human needs. Transition to a 

more human-centric Industry 5.0 will put even more emphasis on AI use in the building of 

capabilities and satisfaction from work. Last but not least, the contribution of AI is a must 

in HRC for smart, sustainable, and inclusive manufacturing ecosystems—showing its 

indispensability to realize the full potential of human-robot collaboration. 
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