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Abstract 

Satellite imagery plays an important role in detecting algal blooms because of its ability 

to cover larger geographical regions. Excess growth of Sea surface algae, 

characterized by the presence of Chlorophyll-a (Chl-a), is considered to be harmful. 

The detection of algal growth at an earlier stage may prevent hazardous effects on the 

aquatic environment. Semantic segmentation of algal blooms is helpful in the 

quantization of algal blooms. A rule-based semantic segmentation approach for the 

segregation of sea surface algal blooms is proposed. Bloom concentrations are 

classified into three different concentrations, namely, low, medium, and high. The 

chl_nn band in the Sentinel-3 satellite images is used for experimentation. The chl_nn 

band has exclusive details of the presence of chlorophyll concentrations. A dataset is 

proposed for the semantic segmentation of algal blooms. The devised rule-based 

semantic segmentation approach has produced an average accuracy of 98%. A set of 

100 images is randomly selected for testing. The tests are repeated on 5 different image 

sets. The results are validated by the pixel comparison method. The proposed work is 

compared with other relevant works. The Arabian Sea near the coastal districts of 

Udupi and Mangaluru has been considered as the area of study. The methodology can 

be adapted to monitor the life cycle of blooms and their hazardous effects on aquatic 

life. 

1. INTRODUCTION 

Algal bloom on the sea surface is caused by the excessive and uncontrolled growth of 

algae. They grow excessively under typical environmental conditions such as eutrophication. 

They produce harmful effects on the environment, such as marine water contamination and 

a large number of fish deaths. With their bulk presence, they can impact the economy (Ho 

et al., 2019) and even cause a huge number of fish deaths (Fogg, 2022; Roelke et al., 2001). 
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Hence, there is a need to subside the excessive growth of algal blooms at an earlier stage. 

Algal blooms can be predicted, detected, and monitored using various approaches, such as 

the usage of chlorophyll-a and phycocyanin proxies, as in Fernández-Tejedor et al. (2022), 

Ogashawara (2019), Vase et al. (2022), Kutser (2009) and Randolph et al. (2008). Image 

processing finds different applications in areas such as expression analysis (Kinane Daouadji 

& Bendella, 2024), hand gesture recognition (Elbahri et al., 2024), breast cancer detection 

(Al-Nawashi et al., 2024), human stress detection (Baran, 2024), copyright protection 

(Makhlouf et al., 2024), and classifying the type of soil (Maiyanti et al., 2023). Similarly, 

image processing can also be adopted in the study of algal blooms. Imagery captured by 

sensors on board satellites and unmanned aerial vehicles (UAVs) can be used for algal bloom 

studies (Haji Gholizadeh et al., 2016). The satellite images are predominantly used in 

monitoring and studying algal blooms, as evident in research by Cui et al. (2022), Zhu et al. 

(2023), Ogashawara (2019), Rodríguez-Benito et al. (2020), and Nayak et al. (2023). 

Sentinel 3A/3B images have different bands that can be used in various earth observation 

applications. One of the useful bands that is present in Sentinel 3A/3B products is the chl_nn 

band, which has exclusive information about the chlorophyll concentration in the region 

captured by the satellite. This band can be explored to study the algal bloom dynamics on 

the sea surface areas. 

Semantic segmentation (Badrinarayanan et al., 2017) is the mechanism of assigning each 

and every pixel of an image to a specific class depending on the application. Semantic 

segmentation has been used in mapping different land cover areas (Kotaridis et al., 2022; 

Lilay & Taye, 2023; Singh et al., 2023), to classify crops and weeds (Radhika et al., 2022), 

to study the river dynamics from SAR images (Verma et al., 2021; Ravishankar et al., 2022), 

and to classify different regions from images captured using UAVs (Girisha et al., 2021a). 

The semantic segmentation technique has been least used for categorization of algal blooms 

into different concentrations. The categorization of algal blooms into different regions based 

on the chlorophyll content can help us study the impact of algal blooms on aquatic life and 

the economy. The Sentinel’s Application Platform (SNAP) tool is effectively used to study 

the sentinel satellite imagery (Zhu et al., 2023). Figure 1 depicts the images of the Arabian 

Sea region, which is considered the study area in this research. The RGB image is obtained 

by using the band combination tool available in SNAP. Figure 1(a) shows the study area, 

specifically the square region within the image, as viewed by the World View option 

available in the SNAP tool. Figure 1(b) shows the corresponding RGB image. 

Objectives of the research are: 

1. To create a dataset for the algal bloom study. 

2. To devise methodology for the semantic segmentation of algal blooms. 

Main contributions of this research are: 

1. Dataset of Sentinel 3A/3B chl_nn band images is created.  

2. A rule-based approach for semantic segmentation of algal blooms is devised. 
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Fig. 1. Study area of Arabian sea being considered in this research (a) Study area as being seen by world 

view option available in SNAP tool (b) RGB Image obtained using default band combinations 

This research is intended to develop a rule-based approach for semantic segmentation of 

sea surface algal blooms. A detailed review of the current state-of-the-art in the area of algal 

bloom detection and usage of semantic segmentation techniques is given in Section 2. 

Proposed methodology is presented in Section 3. Results and discussion are presented in 

section 4. Section 5 gives the conclusions. 

2. LITERATURE SURVEY 

To know the state of the art in the area of algal bloom detection, monitoring, and adoption 

of semantic segmentation for their study, a literature survey is carried out. The gist of the 

survey carried out is as below. 

Fernández-Tejedor et al. (2022) have developed an algorithm for estimating the 

concentration of chlorophyll-A in the coastal area of the northwestern Mediterranean called 

the Ebro Delta. They have adopted various reflectance bands of atmospherically corrected 

Sentinel-2 images. Badrinarayanan et al. (2017) have presented a fully convolutional neural 

network (FCN) architecture for pixel-wise semantic segmentation called SegNEt. The model 

is composed of an encoder, decoder, and pixel-wise classification layer. They have worked 

on road and indoor scene segmentation. Binge Cui et al. (2022) have proposed a method for 

extraction of green tides from Moderate-Resolution Imaging Spectroradiometer (MODIS) 

satellite images. They have adopted super-resolution technology with a deep semantic 

segmentation network (Se-Net). They have compared the performance of the proposed 

methodology with existing methods of green tide extraction. They have considered support 

vector machines (SVM), classification and regression trees (CART), random forest 

algorithms (RM), SegNet, and U-Net for comparison. Wang et al. (2023) have proposed a 

semantic segmentation network that uses hidden features from remote sensing images. The 

network produces accurate results of semantic segmentation by hierarchically fetching and 

combining feature information. They have experimented with the proposed network with the 

15-Class Gaofen Image dataset and the ISPRS dataset. 

Evan Shelhamer et al. (2017) have shown that convolutional neural networks can produce 

improved results in semantic segmentation when trained end-to-end and pixels-to-pixels on 

whole images. They have adapted GoogleNet, VGGNet, and AlexNet into convolutional 

networks for the task of segmentation. Yang and Tang (2021) have utilized geospatial hash 

codes with deep learning techniques for semantic segmentation of satellite images. Ma et al. 
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(2023) have proposed a deep learning architecture for analyzing scenes of Remote Sensing 

Images (RSIs). They have used multiscale adjacency information and multimodal fusion 

features. Ronneberger et al. (2015) have presented a variant of convolutional network called 

U-Net for semantic segmentation. The network can be trained with the help of a small 

number of images and image augmentation techniques. Radhika Kamath et al. (2022) have 

presented a semantic segmentation-based technique for classification of crops and weeds in 

a paddy field. They have used UNet, Pyramid Scene Parsing Network (PSPNet), and SegNet 

models. They have used Intersection over Union (IoU) for the measurement of the obtained 

classification results. Kotaridis Ioannis & Lazaridou Maria (2022) have presented an U-Net-

based semantic segmentation approach. They have mapped different land cover areas, such 

as water, barren land, vegetation, and built-up. They have experimented with different 

combinations of spectral bands provided by Sentinel-2 imagery. 

Lilay and Taye (2023) have presented a machine learning and deep learning-based 

semantic segmentation approach for land cover classification. They have used Sentinel-2 

satellite images of their study area. Ningthoujam and Kishorjit (2023) have presented a 

Deep-Unet architecture for classification of different land fill areas. They have performed 

semantic segmentation on satellite images. They have used intersection over union (IoU) 

and global accuracy measures for evaluating the results produced by developed 

convolutional models. Zhu et al. (2023) have used U-net for identification of algal blooms 

from the combination of Sentinel-2A and Sentinel-2B satellite images. They have used 

ENVI 5.3 and SNAP 6.0 tools for the analysis. They have utilized combinations of different 

spectral bands to explore the algal bloom content in the image. Ogashawara (2019) has 

attempted to show that Sentinel-3 satellite images can be used effectively for mapping of 

cyanobacterial harmful algal blooms (CHABs). He used the optical characteristics of 

chlorophyll-a (chl-a) and phycocyanin (PC) pigments to explore the algal bloom 

concentration. Tendolkar et al. (2021) have presented an agrocopter to monitor the crop 

health. They have utilized the combination of semantic segmentation and the Normalized 

Difference Vegetation Index (NDVI) for identifying the class of crop as unhealthy, 

moderately healthy, and healthy. Ujjwal Verma et al. (2021) have presented an approach to 

measure the width of the river from synthetic aperture radar (SAR) images. They have 

adopted the technique of semantic segmentation with the help of deep learning models such 

as DeepLabV3+ and U-Net. The proposed methodology can be utilized for effective 

management of water resources across the coastal region. 

Girisha et al. (2021b) have presented a UVid-Net for performing semantic segmentation 

of videos captured by using Unmanned Aerial Vehicle (UAV). They have performed transfer 

learning of U-Net on ManipalUAVid dataset for predicting four classes, such as water, 

construction, roads, and greenery. Girisha et al. (2021b) have proposed a conditional random 

field (CRF) framework for semantic segmentation of aerial videos with the help of temporal 

information. The proposed algorithm is experimented on ManipalUAVid dataset. The 

performance is evaluated with the help of mean intersection over union (mIoU). Li and 

Demir (2023) have used a modified version of U-Net architecture for extraction of water 

areas from Sentinel-1 images. They have used the open-access cloud platform Google Earth 

Engine (GEE) for collecting and preprocessing images. Tejas R. et al. (2022) have presented 

a modified U-Net-based approach for segmentation of rivers from the SAR images. They 

have adopted image inversion, thresholding, gamma correction, and multi-stage loss 

functions to improve the performance of segmentation tasks. Anilkumar and Venugopal 
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(2022) have presented a comprehensive review about the usage of deep learning-based 

techniques for semantic segmentation of satellite imagery. The survey addresses research 

gaps, recent advancements, and challenges in semantic segmentation. There exists a gap in 

the adoption of semantic segmentation for identification and classification of algal blooms. 

Rodríguez-Benito et al. (2020) have presented a study on advantages of using Sentnel-3 and 

Sentinel-2 images for algal bloom monitoring. They have presented the temporal, spatial, 

and spectral capabilities of these images for effective algal bloom observation. 

Tholkapiyan et al. (2014) have used time series data of the Ocean Surface Algal Bloom 

Index (OSABI) for monitoring algal blooms on the Indian ocean surface. They have studied 

the geographical locations, extent of coverage, intensity of occurrence and interannual and 

seasonal variabilities of algal blooms. Nayak et al. (2023) have presented a comprehensive 

study on the spatial-temporal changeability of Chl-a across various biogeographic regions 

in the North Indian Ocean (NIO). They have considered images from the Ocean Color 

Monitor 2 (OCM2), MODIS, and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). 

Vinaya Kumar Vase et al. (2022) have validated the capabilities of satellite-based sensors to 

provide the Chl-a information present on the ocean surface. They have performed the 

comparison with sea truth data gathered from 204 stations across 3 years from 2015-2017. 

They have considered data from MODIS, Visible Infrared Imaging Radiometer Suite 

(VIIRS), and OCM2 sensors. They have found that OCM2 sensor data gives better results. 

Srichandan et al. (2022) have presented a study on the spatial and temporal distribution of 

phytoplankton blooms in the coastal regions of the Bay of Bengal (BoB). Jaiganesh et al. 

(2021) have presented a satellite-based approach to study the overall ocean productivity with 

the help of wind flow information, sea surface temperature (SST), and chlorophyll 

concentration datasets. Nallapareddy et al. (2022) have utilized Landsat-8 infrared images 

for classification of vegetation areas. 

From the survey, it is evident that researchers have used Sentinel-2 images for algal 

bloom studies. The semantic segmentation technique is adopted for classification of different 

land cover fills and scene analysis. Little research is carried out on usage of the chl_nn band 

of Sentinel-3 images for semantic segmentation of algal blooms. There is no attempt made 

to develop a rule-based technique for semantic segmentation of algal blooms. Hence the 

research is carried out in the direction of semantic segmentation of Sentinel-3 images, 

specifically with the help of chl_nn band and rule-based technique. 

3. PROPOSED METHODOLOGY 

The dataset for algal bloom detection was created as there was no standard dataset. 

Sentinel 3 (S3) is a two-satellite mission comprising of Sentinel-3A (S3A) and Sentinel-3B 

(S3B). The data from both collections is available as open access to all the users. The Ocean 

and Land Color Instrument (OLCI) onboard S3 is an imaging spectrometer having a medium 

spatial resolution of 300 meters and 14-bit radiometric resolution. It provides 21 image bands 

with a temporal resolution of 1 day when combinations of S3A and S3B are considered 

together. For the purpose of our study, we have downloaded OLCI Level-2 Water Full 

Resolution (OL_2_WFR) products (EUMETSAT, 2024). A total of 23 images are 

considered in this research. Table 1 gives the details of some of the images used in this 

research. The life span of algal bloom varies from a few days to several months based on 
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environmental factors and seasonal conditions. We are attempting to segment the bloom 

concentrations within the given chl_nn band image. To make sure that our dataset has bloom 

concentrations of all the ranges, we have considered images in around 3 months. The images 

that have significantly less cloud coverage are identified and used. The combination of 

Sentinel-3A and Sentinel-3B images is used in this research to accommodate the increased 

revisit time of the geographical area being considered. The images captured by Sentinel-3A 

and Sentinel-3B satellites are identified by the prefixes S3A and S3B, respectively. The 

advantage of using sentinel products is that they provide temporal resolution of 1 day, which 

helps in continuous monitoring of blooms. They measure systematically Earth’s land, ice, 

oceans, and atmosphere to provide essential information in near-real time for weather 

forecasting. The disadvantage of these products is that they have a spatial resolution of 300 

meters, which is not suitable to study smaller geographical areas. 

Tab. 1. Details of some of the satellite imagery used in the research 

Acquisition date 

(dd/mm/yyyy) 
Image 

21/12/2021 S3B_OL_2_WFR____20211221T050947_20211221T051247 

29/12/2021 S3B_OL_2_WFR____20211229T050218_20211229T050518 

02/01/2022 S3B_OL_2_WFR____20220102T045833_20220102T050133 

30/01/2022 S3A_OL_2_WFR____20220130T051149_20220130T051449 

22/02/2022 S3A_OL_2_WFR____20220222T051531_20220222T051831 

26/02/2022 S3A_OL_2_WFR____20220226T051146_20220226T051446 

28/02/2022 S3B_OL_2_WFR____20220228T052059_20220228T052359 

01/03/2022 S3B_OL_2_WFR____20220301T045448_20220301T045748 

3.1. Dataset creation 

The Sentinel’s Application Platform 9.0.0 (SNAP 9.0.0), an open source product, is 

utilized for analysis of Sentinel 3 products. Sentinel 3 satellite images have a specific band 

called CHL_NN, which explores the presence of chlorophyll in the satellite images. Upon 

opening the band in the explorer, we will be able to see the default grayscale image of the 

region being covered by the satellite imagery, as shown in Fig. 2. At the bottom left corner 

of the figure is the area of the Arabian Sea being considered for analysis. The corresponding 

image of the CHL_NN band is displayed at the right portion of the figure. Every pixel of 

this image has the information of its longitude and latitude, along with the amount of 

chlorophyll contained in it. This image can be exported for further analysis. 

SNAP has built-in palettes for exploring the visual representations of the satellite images. 

These palettes are helpful in assigning the individual pixels of the image to different groups 

based on the value of chlorophyll present in them. SNAP has the provision to explore the 

images either by using the range of chlorophyll values present in the CHL_NN band image 

or by using the values present in the color palette definition. The range of chlorophyll value 

may differ from one satellite image to another. We can define our own color palette 

definition file, and we can have a maximum of 256 color definitions. Once the color palette 

is defined, it can be adopted for analyzing all the images in the same way. Hence, we have 

considered exploring or visualizing all the CHL_NN band images by using palette definition. 

We can assign continuous or discrete colors for the pixels based on their chlorophyll values. 
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For the better assignment of unique colors for the pixels within a range of chlorophyll values, 

we have considered the assignment in discrete fashion. For the purpose of generating the 

dataset for semantic segmentation, we have tailored the existing palettes and used them on 

the CHL_NN band images. 

 

Fig. 2. Default grayscale image of the CHL_NN band present within satellite image captured on 29-12-

2021 

Tab. 2. Tailoring of existing gray_scale palette definition file in SNAP 

Default palette definition Tailored palette definition 

Chlorophyll 

(mg/m3) 

Color assigned 

(R, G, B) 

Chlorophyll 

(mg/m3) 

Color assigned 

(R, G, B) 

0.0000001 (0, 0, 0) 0.0000001 to 0.2 (102,102,102) 

0.2 (51, 51, 51) 0.2 to 1.8 (153,153,153) 

0.4 (102, 102, 102) 1.8 to 8.0 (204,204,204) 

0.6 (153, 153, 153) 8.0 to 42.9999997 (255,255,255) 

0.8 (204, 204, 204)  

1.0 (255, 255, 255) 

Number of points / colors = 6 Number of points / colors = 4 

 

This research is concentrated on grouping algal blooms into 3 major categories, namely, 

LOW BLOOM, MEDIUM BLOOM, and HIGH BLOOM. Along with this, the authors are 

considering the image area with significantly less amount of chlorophyll as the WATER 

part. The region in which there is no chlorophyll value is considered a background. This 

background represents the earth or land space, which has no chlorophyll content. This also 

represents the presence of clouds in the acquired images. Hence, there are 4 classes of image 

regions that are being considered in our research. To obtain the grayscale image with these 

4 major classes of pixels, the authors have tailored the existing ‘gray_scale’ palette definition 

file as given in Tab. 2. 
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The R, G, and B color values of (0, 0, 0) are assigned to all the pixels that have the 

chlorophyll values within the range 0.0000001 to 0.1999999. The color values of (51, 51, 

51) are assigned to all the pixels having chlorophyll values of range 0.2 to 0.3999999 and so 

on. Finally, all the pixels that have chlorophyll values from 1.0 and above are assigned color 

values of (255, 255, 255). Hence there are 6 color points in the default definition file. In the 

tailored palette definition file, the authors assigning the R, G, and B color values of (102, 

102, 102) to the pixels with chlorophyll values within the range 0.2 to 1.7777779. The values 

(153, 153, 153) are assigned to pixels with a chlorophyll range of 1.8 to 7.9. The values 

(204,204,204) are assigned to pixels with a chlorophyll range of 8.0 to 42.8888889. The 

values (255, 255, 255) are assigned to all the pixels with chlorophyll values of 42.9999997 

and above. Figure 3 shows the difference between images obtained with the default palette 

and tailored palette onto the CHL_NN band of the image captured on 29-12-2022. 

  

(a) (b) 

Fig. 3. Grayscale images obtained from CHL_NN band of satellite image captured on 29-12-2022 (a) 

Image obtained using default color palette definition file (b) Image obtained using tailored color palette 

definition file 

To explore the presence of chlorophyll concentration in satellite images, SNAP provides 

a ‘cc_chl’ color palette. The default implementation of ‘cc_chl’ color palette has 8 different 

color definitions for assigning to different pixels based on their chlorophyll values. The 

authors have obtained the tailored definition file for this palette for adopting to our dataset. 

The default and tailored definitions of ‘cc_chl’ color palette is given in Tab. 3. The (R,G,B) 

combination of values (0,0,128) produces blue color and is used to signify the presence of 

water in the image. Values (0,153,51) produce green color and signify LOW BLOOM. 

Values (255, 255, 91) produce yellow color and signify MEDIUM BLOOM. Values 

(204,0,0) produce a red color and signify HIGH BLOOM. The default ‘gray_scale’ palette 

has 6 different color points, and the ‘cc_chl’ color palette has 8 different color points. These 

palettes are tailored to 4 different color points. During conversion in both cases, the 

corresponding range of chlorophyll values is maintained the same. Only the range of pixel 

values in the destination color points is changed. This ensures consistency in the obtained 

grayscale and color images. 
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Tab. 3. Definition of cc_chl color palette 

Default palette definition Tailored palette definition 

Chlorophyll 

Value (mg/m3) 

Color assigned (R, G, 

B) 

Chlorophyll 

Value (mg/m3) 

Color assigned 

(R, G, B) 

0.1 (0, 0, 128) 0.0000001 to 0.2 (0, 0, 128) 

0.3 (51, 102, 255) 0.2 to 1.8 (0, 153, 51) 

1.0 (0, 176, 220) 1.8 to 8.0 (255, 255, 91) 

2.5 (0, 153, 51) 8.0 to 42.9999997 (204, 0, 0) 

5.0 (255, 255, 91)   

10.0 (230, 51, 0)   

25.0 (204, 0, 0)   

59.9999997 (128, 0, 0)   

Number of points / colors = 8 Number of points / colors = 4 

 

Figure 4 shows the difference between images obtained after superimposing the default 

‘cc_chl’ color palette and tailored ‘cc_chl’ palette. The figure depicts the CHL_NN band of 

the image captured on 29-12-2022. In Fig. 4(a), we can see eight different colors for eight 

different classes of algal bloom concentrations. Figure 4(b) depicts four colors for four 

classes of algal bloom concentrations considered in our research. 

  

(a) (b) 

Fig. 4. Color images obtained from CHL_NN band after superimposing cc_chl color palette (a) Image 

obtained using default color palette definition file (b) Image obtained using tailored color palette 

definition file 

These high-resolution CHL_NN bands having 4865 pixels of width and 4091 pixels of 

height are exported and saved in the form of an image. For the purpose of processing, these 

larger images are split into smaller images with dimensions of 256 pixels width and 256 

pixels height. Each high-resolution image results in around 300 smaller images. Some of the 

produced images will have a black border or a single column of pixels. We have discarded 

such images manually. There is a future scope to develop deep learning models for semantic 

segmentation of algal blooms. Hence the size of 256x256 pixels is considered for the 

generation of images. The data set consists of a total of 5000 images. Figure 5 depicts some 

of the grayscale images and the corresponding color images with different bloom 

concentrations. Some of the images that were discarded from the dataset are depicted in Fig. 

6. 
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Fig. 5. Raw images considered in semantic segmentation of algal bloom concentrations and their 

corresponding ground truth images 

   

Fig. 6. Some of the images which were manually discarded from the dataset 

The authors attempt to segment the images into 3 classes of blooms as LOW, MEDIUM, 

and HIGH. The increased volume of bloom, HIGH range, causes death of fish on the ocean 

surface. The LOW and MEDIUM quantities of bloom have minimal impact on fish or the 

environment. The research can be further extended to compare the impact of bloom 

concentration on aquatic life, such as the deaths of a large number of fish under the bloom. 

There is a scope to develop techniques for early detection of changes from LOW to 

MEDIUM concentration and MEDIUM to HIGH concentration. With this future motive, the 

authors have divided the bloom into 3 major classes. 

4. RESULTS AND DISCUSSION 

The authors automate the previously manual process of segmenting satellite images into 

different bloom concentrations. A rule-based classifier is developed for achieving semantic 

segmentation of image regions into WATER, LOW, MEDIUM, HIGH, and 

BACKGROUND. 

4.1. Rule-based classification 

To develop the rules, the presence of chlorophyll in the images is divided into different 

regions, five in this case. Appropriate grayscale values are assigned to represent this division. 

Then these grayscale images are mapped to corresponding color areas of blue, green, yellow, 

red, and black to represent different segmented regions. The procedure is depicted in Fig. 7. 

The algorithm for segmentation of bloom into different concentrations is presented in 
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Algorithm 1. The devised rules for the semantic segmentation of algal blooms into different 

regions are given in Tab. 4. 

 

Fig. 7. Process of semantic segmentation of blooms 

Tab. 4. Sample rules for semantic segmentation of bloom 

No. Bloom level Devised rule for segmentation 

1 Low 

For every pixel in the image obtained using grayscale palette, IF (The pixel 

values of RGB channels are (153,153,153)) THEN label the corresponding 

pixel as GREEN 

2 Medium 

For every pixel in the image obtained using grayscale palette, IF (The pixel 

values of RGB channels are (204,204,204)) THEN label the corresponding 

pixel as YELLOW 

3 High 

For every pixel in the image obtained using grayscale palette, IF (The pixel 

values of RGB channels are (255,255,255)) THEN label the corresponding 

pixel as RED 

4 Water 

For every pixel in the image obtained using grayscale palette, IF (The pixel 

values of RGB channels are (102,102,102)) THEN label the corresponding 

pixel as BLUE 

5 Background 

For every pixel in the image obtained using grayscale palette, IF (The pixel 

values of RGB channels are (0,0,0)) THEN label the corresponding pixel 

as BLACK 

 

Algorithm 1: Semantic segmentation of algal bloom 

Input: Raw satellite image of Indian ocean. 

Output: Image segmented with low, medium and high algal bloom concentrations. 

Process: The image will be scanned pixel-by-pixel from left to right and top to bottom. 

The RGB values of every pixel are compared with derived values. The pixels are 

categorized/segmented into blue, green, yellow, red and black regions indicating water, low 

bloom, medium bloom, high bloom and no bloom parts, respectively.  

Begin 

Step 1: Read the input image as IMAGE 

Step 2: for (Each row present in the IMAGE) perform 

      Step 2.1: for (Each column present in the IMAGE) perform 

            Step 2.1.1: if RGB values of pixel at (row, column) equals to (0,0,0) 

                             then assign RGB values of (0,0,0) to that pixel 

            Step 2.1.2: else-if RGB values of pixel at (row, column) equals to (102,102,102) 
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                             then assign RGB values of (0,0,128) to that pixel 

            Step 2.1.3: else-if RGB values of pixel at (row, column) equals to (153,153,153) 

                          then assign RGB values of (0,153,51) to that pixel 

            Step 2.1.4: else-if RGB values of pixel at (row, column) equals to (204,204,204) 

                          then assign RGB values of (255,255,91) to that pixel 

            Step 2.1.5: else-if RGB values of pixel at (row, column) equals to (255,255,255) 

                          then assign RGB values of (204,0,0) to that pixel 

     Step 3: Display the segmented IMAGE into five different classes    

End 

4.2. Experimental results 

The raw images in the dataset are input to the devised rule-based classifier. The rules 

were developed using a Python tool. The obtained results are validated by using the pixel-

by-pixel comparison method. Some of the sample test images, segmented images, and their 

corresponding ground truth images are depicted in Fig. 8. To validate the obtained results, 

we have randomly selected 100 images obtained after applying rule-based semantic 

segmentation. The corresponding known ground truth images, images with known classes 

of blooms, for these 100 images are selected from our dataset. The pixel-by-pixel 

comparison is performed between these sampled groups of images. 

    

    

    

Fig. 8. Results of semantic segmentation of algal bloom concentrations. Every column depicts the sample 

test image, its segmented image, and its corresponding ground truth 

An image is considered to be accurately segmented if all its pixels are properly assigned 

to their corresponding 4 bloom classes without any single pixel being wrongly assigned to a 

different class. If any of the pixels is wrongly assigned a different class, then it is not treated 

as segmented. A total of 98 images are properly being segmented into 4 bloom classes 

considered in our research. This experimentation of random selection of 100 images and the 

corresponding ground truth images is repeated an additional 4 times. The obtained results 

are tabulated, and the average result of all 5 experiments is claimed as the accuracy of the 
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developed rule-based classifier. The results are given in Tab. 5. The average accuracy of 

semantic segmentation obtained using a rule-based classifier is 98%. 

Tab. 5. Results of semantic segmentation 

Experiment No. 1 2 3 4 5 

Accurately Segmented images 98 97 99 98 98 

 

The predicted algal blooms can be measured with in-situ data. The bloom samples can 

be physically collected from the region being analyzed. The chlorophyll content of the 

collected sample can be manually estimated in the laboratory setup. The laboratory results 

and algorithm results can be compared. The process is laborious, costly, and time-

consuming. As we have not validated the results using in-situ data, we used the manual 

validation approach in the SNAP tool. The area being segmented is selected with the mouse, 

and chlorophyll content in that region is examined. The chlorophyll value is compared with 

the segmented class of bloom based on color. We have followed manual validation as in-

situ validation was not feasible under the research circumstances. 

4.3. Comparative study 

Different research has been conducted on algal bloom segmentation. A rule-based 

approach for semantic segmentation of algal blooms has not been attempted by earlier 

researchers. 

Tab. 6. Comparison of our work with existing works 

Reference Work carried out 
Dataset 

used 
Technique Accuracy (%) 

( Fernández-

Tejedor et al., 

2022) 

Estimation of Chl-a 

concentration 

Sentinel-2 

images 

Generated chlorophyll 

maps using the SNAP 

tool. 

70.00 

(Cui et al., 

2022) 

Semantic 

segmentation of 

green tide 

MODIS 

Presented a super-

resolution-based 

segmentation network 

96.88 

(Singh et al., 

2023) 

Semantic 

segmentation of 

satellite images 

Drone 

multispectr

al data  

Deep learning is 

adopted for semantic 

segmentation. 

90.60 

(Ioannis & 

Maria, 2022) 

Semantic 

segmentation of 

satellite images 

Sentinel-2 

images 

A deep learning 

approach is utilized. 
90.00 

(Lilay & Taye, 

2023) 

Land cover 

classification from 

satellite images 

Sentinel-2 

satellite 

images 

LinkNet model is used. 88.20 

(Radhika et al., 

2022)  

Semantic 

segmentation of 

paddy crops and 

weeds 

Dataset 

created by 

digital 

camera 

PSPNet and UNet 90.00 

Our work 

Semantic 

segmentation of 

algal blooms 

Sentinel 

3A/3B 
Rule-based approach 98.00 
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The comparison of the work is made with some of the other relevant works as given in 

Tab. 6. From the comparative study, it is evident that the proposed rule-based technique has 

produced better accuracy in segmentation. 

5. CONCLUSIONS 

Algal blooms (ABs) are considered to be harmful when they grow beyond the acceptable 

level on the sea surface. They may cause harmful effects on aquatic life and may affect the 

economy. Satellite imagery plays a significant role in tracking the growth of algal blooms. 

Sentinel 3A/3B images are considered in this research. The band containing the details of 

chlorophyll-a, chl_nn, from sentinel products is utilized in this study. The dataset is created 

by using Chl_nn band images. The semantic segmentation technique is adopted in 

classifying algal bloom regions into low, medium, and high concentrations. A rule-based 

classifier is developed that utilizes the gray level values corresponding to the level of bloom 

concentration present in the region. The rules segment the image into the water part, low-

level bloom, medium-level bloom, high-level bloom, and background. The developed rule-

based segmentation technique has produced an average accuracy of 98%. The proposed 

methodology demonstrates that semantic segmentation can be adopted in an algal bloom 

study. The proposed dataset can be used for training deep learning classifiers, such as U-

NET, FCN, and Deeplab. The rule-based segmentation technique can be effectively utilized 

in the semantic segmentation of algal blooms. The methodology finds applications in 

developing a system to monitor the excess growth of algal blooms and to prevent their 

hazardous impact on aquatic life. 
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