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A multi-modal transformer-based model  

for generative visual dialog system 

Abstract 

Recent advancements in generative artificial intelligence have boosted significant interest in 

conversational agents. The visual dialog task, a synthesis of visual question-answering and dialog systems, 

requires agents capable of both seeing and chatting in natural language interactions. These agents must 

effectively understand cross-modal contextual information and generate coherent, human-like responses to 

a sequence of questions about a given visual scene. Despite progress, previous approaches often required 

complex architectures and substantial resources. This paper introduces a generative dialog agent that 

effectively addresses these challenges while maintaining a relatively simple architecture, dataset, and 

resource requirements. The proposed model employs an encoder-decoder architecture, incorporating 

ViLBERT for cross-modal information grounding and GPT-2 for autoregressive answer generation. This 

is the first visual dialog agent solely reliant on an autoregressive decoder for text generation. Evaluated 

on the VisDial dataset, the model achieves promising results, with scores of 64.05, 62.67, 70.17, and 15.37 

on normalized discounted cumulative gain (NDCG), rank@5, rank@10, and the mean, respectively. These 

outcomes underscore the effectiveness of this approach, particularly considering its efficiency in terms of 

dataset size, architecture complexity, and generation process. The code and dataset are available at 

https://github.com/GhadaElshamy/MS-GPT-visdial.git , complete with usage instructions to facilitate 

replication of these experiments. 

1. INTRODUCTION 

Recent advancements in artificial intelligence have significantly sparked the development of vision-

language tasks, with visual dialog systems emerging as a particularly promising area of research. These 

systems, designed to facilitate natural language interactions based on visual content, offer a compelling avenue 

for human-machine communication. The pursuit of creating AI agents capable of both understanding and 

chatting has driven substantial progress in visual dialog research as evidenced by the growing body of literature 

on the visual dialog domain (Das et al., 2016, 2017; de Vries et al., 2016; Fan et al., 2020; Jiang et al., 2020b; 

Kottur et al., 2018; Liu et al., 2022; Lu et al., 2017; Schwartz et al., 2019; Seo et al., 2017; Wu et al., 2018; 

Yang et al., 2019; J. Zhang et al., 2018; Zhao et al., 2021). The work of Das et al. (2016) was the first 

introduction of the visual dialog task and the VisDial dataset. The VisDial dataset is mostly used as the 

benchmark dataset for evaluating and advancing the capabilities of visual dialog systems. 

Visual dialog (VD) task is a conversational task with a cross-modality nature, where it integrates natural 

language understanding with visual grounding. The VD agent is required to answer the questions posed by a 

human or another agent regarding a visual scene within the context of a free-form conversation. Given a dialog 

history consisting of question-answer pairs, a current question, and a visual scene, the agent is required to infer 

the context from the history and ground it on the visual scene to answer the question correctly. The ultimate 

objective of these systems is to develop AI agents that can effectively assist humans by leveraging their 

conversational and visual capabilities. Visual dialog systems have the potential to address a multitude of real-

world applications, including providing support to visually impaired individuals in navigating their 

surroundings, aiding in the analysis of extensive surveillance data, and contributing to robotic missions for 

space exploration. Furthermore, this technology supports applications in biomedical engineering, such as 

analyzing medical images, and aiding in surgical planning and treatment decisions based on patients’ medical 
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histories. Additionally, it can be utilized in the field of economics for financial market analysis and risk 

assessment.  

The VD task is a complex vision language task as it requires processing the inputs from vision and language 

modalities simultaneously. This processing includes contextual visual comprehension, language 

understanding, and visual coreference resolution. Contextual visual comprehension emphasizes single-

modality feature extraction and multimodal reasoning. Reasoning aims to highlight relevant information 

between the input modalities to guarantee better understanding. Specifically, the VD task requires the agent 

not only to understand the textual intent but also requires grounding it on the visual information. Thus, 

multimodal reasoning can be a considerable challenge for the VD task. In addition, as a conversational task, 

there might be many pronouns resolution (e.g. it, they, her, etc.) referring to objects or people that are 

previously mentioned during the conversation which is difficult for the agent to understand and relate. This 

problem is known as visual coreference resolution which is also considered as a challenge for this task. Last 

but not least, the VD task encounters a dataset bias problem where the agent may rely excessively on the 

dataset pattern, i.e. relation between question and answer, which limits its exploration ability for the image 

content. Therefore, the agent generalization ability and robustness will be considerably restricted.  

Subsequent to the introduction of the visual dialog task, extensive research efforts have been undertaken to 

address the challenges associated with this domain. Most of the proposed visual dialog models were trained 

from scratch on the VisDial dataset to produce the answer either via supervised learning such as Das et al. 

(2016), de Vries et al. (2016), Fan et al. (2020), Jiang et al. (2020b), Kottur et al. (2018), Liu et al. (2022), Lu 

et al. (2017), Schwartz et al. (2019), Yang et al. (2019) or deep reinforcement learning such as Das et al., 2017, 

Wu et al., 2018, J. Zhang et al., 2018, Zhao et al. (2021). Das et al. (2017) were the first to introduce a 

reinforcement learning-based model for free-form VD task. Different attention mechanisms-based approaches 

were proposed by Das et al. (2016), Fan et al. (2020), Kottur et al. (2018), Seo et al. (2017), Yang et al. (2019) 

to improve the multimodal reasoning and focus on the important relevant parts of the multimodal inputs. In 

addition to the attention mechanism, other approaches such as Kottur et al. (2018), Seo et al. (2017), Yang et 

al. (2019) addressed the visual coreference resolution problem in their proposed models. Furthermore, other 

approaches like (Lu et al., 2017; Wu et al., 2018) employed generative adversarial networks (GANs) to 

enhance attention mechanisms and generate more comprehensive responses. Zhang et al. (2018) utilized 

hierarchical reinforcement learning policy networks to augment the agent's capacity for exploration and 

exploitation, thereby optimizing reward acquisition and enhancing the overall quality of the dialogue. 

Moreover, some approaches, such as those proposed by Jiang et al. (2020b), Liu et al. (2022), Schwartz et al. 

(2019) proposed graph-based attention mechanisms to capture more details by extracting deeper relationships 

between multimodal features. While these studies incorporated attention mechanisms as an essential 

component and implemented various model enhancements, they remained constrained by limitations such as 

the generation of repetitive sentences and suboptimal model robustness. 

Regarding these limitations, recent approaches such as C. Chen et al. (2022), F. Chen et al. (2021), Kang 

et al. (2023), Murahari et al. (2020), Y. Wang et al. (2020) decided to use transformer-based pre-trained models 

like BERT (Devlin et al., 2019) and ViLBERT (Lu et al., 2019) and finetuned these models on the visual dialog 

task. Transformer-based models (Vaswani et al., 2017) have demonstrated exceptional performance in natural 

language processing (NLP) tasks that demand strong reasoning abilities, a crucial requirement in this context. 

Furthermore, the efficacy of transformer-based models in computer vision tasks, including (Li et al., 2023; X. 

Lin et al., 2023), emphasizes their suitability for vision-language tasks. In addition, these models are pretrained 

on huge amount of data which helps in ameliorating the dataset bias problem. Employing BERT as the decoder 

for answer generation, as in the previous transformer-based approaches, may not be recommended due to its 

autoencoding nature. Although BERT is excellent at understanding and representing the context of a given 

text, it lacks the ability to generate new text sequences in a sequential manner as mentioned in (Wang & Cho, 

2019). While it is applicable to adapt BERT for encoder-decoder architectures for text generation, its inherent 

limitations in producing diverse and lengthy responses constrain its conversational capabilities. Now comes 

our research question: What are the advantages and limitations of using an autoregressive decoder model for 

visual dialog to generate responses that are consistent with the multi-modal context? 

This paper presents a generative visual dialog system following the “pretrain then transfer” technique to 

build powerful and efficient conversational agents that can generate human-like responses. To achieve this 

objective and address the challenges, powerful transformer-based models such as ViLBERT (Lu et al., 2019) 

and GPT-2 (Radford et al., 2019) are utilized to enhance the model’s generation ability. BERT has a 

bidirectional processing ability for tokens which is eagerly needed in the encoder to help the decoder 
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coherently generate responses. Consequently, ViLBERT is employed as our cross-modal encoder due to its 

compatibility with BERT and its specific design for visual-language conjunction. It effectively extracts visual 

and textual features, establishing connections and grounding between them to facilitate a comprehensive 

contextual understanding of the input modalities. GPT-2 is selected as the decoder due to its ability to generate 

coherent and contextually rich sentences. In the context of visual dialog, GPT-2 demonstrates improved 

reasoning capabilities by effectively leveraging the encoded understanding from ViLBERT to produce 

responses that are relevant to the image, question, and dialog history. Moreover, it generates responses with a 

more natural tone compared to the factual responses produced by BERT. Additionally, GPT-2 is less 

susceptible to dataset bias than BERT, as it is pre-trained on a larger dataset, which enhances its generalization 

ability and overall performance. The proposed model achieves promising results across normalized discounted 

cumulative gain (NDCG), rank@5, and rank@10 and the mean metrics, with scores of 64.05, 62.67, 70.17, 

and 15.37, respectively. The experimental results on the VisDial dataset demonstrated that the generated 

answers exhibited greater realism and coherence when compared to the ground truth answers.  

The findings highlight the crucial role of autoregressive decoders, specifically GPT-2, in enhancing the 

quality of generated responses within conversational systems. This improvement leads to more engaging and 

effective interactions. These findings have significant implications for the development of interactive visual 

chatbots and can inform future research in a variety of related applications, including education, healthcare, 

customer service, and assistive technologies. 

This paper presents a comprehensive literature review of prominent visual dialog research, focusing on key 

contributions, limitations, and potential avenues for advancement in section 2. Section 3 introduces the 

proposed model as a solution to the identified research challenges. Implementation details are provided in 

section 4. Experimental results and a detailed description of the dataset used are presented in section 5. Finally, 

section 6 summarizes our findings, draws conclusions, and outlines potential directions for future research. 

2. RELATED WORKS 

Recent achievements in the AI field have significantly propelled the development of multi-modal tasks, 

where deep models leverage a combination of text, images, video, audio, and other modalities. Vision-language 

(VL) models have emerged as powerful tools for a wide range of complex AI applications, owing to their 

ability to integrate visual and linguistic information into a shared semantic space. Various VL tasks have been 

addressed using deep neural modules, including captioning systems (Dai & Zhang, 2022; Xin et al., 2023), 

video processing (Cui et al., 2023; Zhang et al., 2024), text-to-image synthesis (Yu et al., 2024), visual 

question-answering (VQA) systems (Cadène et al., 2019; Yu et al., 2019), and visual dialog systems. 

Visual dialog, an extension of VQA, requires an agent to engage in a series of questions and answers about 

a specific image aligned with the previous dialog exchanges. In contrast, VQA typically involves answering a 

single question about an image. Visual dialog systems have been formulated using two primary approaches: 

free-form conversation introduced by (Das et al., 2016), and goal-oriented conversation in the form of a 

guessing game introduced by de Vries et al. (2016). Each approach is associated with a specific dataset: VisDial 

(Das et al., 2016), and GuessWhat! (de Vries et al., 2016) datasets, both of which were collected using Amazon 

Mechanical Turk (AMT). 

Previous studies have employed deep neural modules to train visual dialog systems on the VisDial dataset 

in an end-to-end fashion, utilizing an encoder-decoder architecture. The encoder processes the input tuple, 

consisting of an image, dialog history, and a follow-up question, to generate a contextual vector representation. 

This encoded context is then integrated by the decoder to infer information and produce the correct answer. 

In addition to the context, the decoder network receives a list of one hundred candidate answers, including 

the ground-truth answer. The answering process within the decoder can be implemented either discriminatively 

or generatively. 

A core component that has been widely adopted in previous research is the attention mechanism, which 

effectively aligns the question with the dialog history while grounding it on the given image, thereby enhancing 

the agent's multimodal comprehension capabilities. Based on this foundation, subsequent approaches have 

increasingly favored transformer-based models for generating coherent responses to the specified question. 

Transformers (Vaswani et al., 2017), employ a codec (encoder-decoder) structure with a multi-head attention 

mechanism, where each head focuses on distinct relationships within the input sequence. This enables them to 

handle long-sequence dependencies more effectively, leading to superior performance in various natural 
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language processing (NLP) tasks such as machine translation, question-answering, text generation, and 

summarization. 

Bidirectional Encoder Representations from Transformers (BERT) is a powerful encoder-only transformer 

network known for its contextual understanding capabilities. Its bidirectional nature enables deep 

contextualization of the input sequence, making it well-suited for various NLP tasks such as sentiment analysis, 

text summarization, and question-answering. BERT is pre-trained on a massive dataset using two objectives: 

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). MLM randomly masks tokens and 

trains BERT to predict them, while NSP trains BERT to predict whether a given sentence follows another. 

ViLBERT is another transformer-based model that extends BERT by incorporating two encoder streams, one 

for the visual input and the other for the textual input through applying cross-attention layers between the two 

streams. ViLBERT is particularly well-suited for the visual dialog task, as it naturally addresses the challenges 

of multimodal reasoning. 

Subsequent studies in visual dialog have frequently built their models upon the BERT architecture. 

Murahari et al. (2020) proposed the VisDial-BERT model, aiming to leverage pre-trained checkpoints from 

related vision-language tasks to enhance visual dialog system performance. To achieve their objective, they 

developed a discriminative visual dialog agent based on the ViLBERT model. By applying transfer learning 

to the VisDial dataset, they adapted ViLBERT and achieved competitive results in the discriminative setting. 

While their model set a new state-of-the-art at the time, it did not introduce a generative agent, which is often 

considered more desirable in this task, as generative models can simulate more human-like conversations. 

Wang et al. (2020) proposed a simpler yet more effective architecture than VisDial-BERT called (VD-

BERT), addressing both the discriminative and generative settings. This unified model for visual dialog 

effectively integrates multimodal features through visually grounded training, leading to improved results 

compared to VisDial-BERT in the discriminative setting and promising results in the generative setting. While 

VD-BERT offers a simple and effective approach, it may be limited in its reasoning ability when faced with 

complex tasks that require in-depth analysis of visual and textual relationships. Additionally, training solely 

on the VisDial dataset can pose significant generalization challenges. 

 C. Chen et al. (2022) also utilized ViLBERT as their encoder and used a single transformer-based decoder 

to serve both discriminative and generative settings. They proposed a unified contrastive learning approach 

called (UTC) and they achieved comparative results compared to the prior works. However, training a unified 

decoder simultaneously to handle both settings causes the agent to be confused at some time to perform which 

task. 

Kang et al. (2023) proposed a Generative Self-Training approach (GST) based on ViLBERT and BERT. 

They employed the same encoder architecture proposed by Murahari et al. (2020) and they adapted BERT to 

act as an autoregressive decoder for answer generation. They applied the GST algorithm to enable the model 

to generate multi-turn visual question-answer data to leverage unlabeled Web images effectively. The GST 

approach achieved state-of-the-art performance on the VisDial dataset. However, training GST required 

creating a synthetic dataset by generating questions and answers for given images and their captions. This 

significantly increased the training dataset size from 1.2 million to 12.9 million which required substantial 

computational power. In addition, relying on the generated data by their agent to perform the GST approach 

leads to limited domain knowledge for the agent which in turn could raise the dataset bias problem. 

Regarding these issues, the authors believe that this task requires an auto-regressive decoder model by 

nature so that it can form better, realistic, and creative responses. Auto-regressive decoders have proven their 

ability to cover this problem in other similar tasks as mentioned in Radford et al. (2019), as well as their ability 

to be fine-tuned for the task objective. In this paper, the primary objective is to examine the advantages and 

limitations of creating an agent based on the GPT-2 (Radford et al., 2019) model as the decoder. The objective 

is to improve the quality, creativity, uniqueness, and relevance of the generated responses, which are essential 

for conversational tasks. Additionally, these goals are pursued while maintaining a lower computational cost 

compared to the state-of-the-art approaches.  

An evaluation framework was developed with a set of criteria metrics to facilitate a comprehensive 

comparison with existing methods. The evaluation framework incorporates the same retrieval metrics 

established by Das et al. (2016), NDCG, Rank@k, Mean, and MRR. Additionally, it involves a comparative 

analysis of the model complexity across different methods, regarding hardware resource requirements (GPUs), 

dataset size, and decoder parameter configurations. 

A small version of GPT-2 (117M parameters) is used, containing approximately one-third the number of 

parameters compared to BERT-base (340M parameters), resulting in reduced computational cost. 
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Additionally, the model is evaluated on the VisDial dataset, where it outperforms the UTC model C. Chen et 

al. (2022) on NDCG, R@5, R@10, and mean rank. Promising results are achieved compared to the model by 

Kang et al. (2023) in evaluation metrics, with lower computational cost, utilizing a smaller dataset and fewer 

decoder parameters. 

3. METHOD 

The proposed model consists of two main components as illustrated in Fig. 1. A cross-modal encoder for 

encoding the triplet input (i.e. visual features, question (𝑄𝑡), and history (𝐻1→𝑡−1)) all together forming the 

context. In addition to an autoregressive decoder to generate an answer 𝐴̂𝑖
𝑡 for the current question 𝑄𝑡 at round 

𝑖 conditioned on the given triplet context. In this architecture, ViLBERT is utilized as the cross-modal encoder 

and GPT-2 as the autoregressive decoder. As illustrated in Fig. 1, the ViLBERT encoder takes both text and 

vision input and then fuses them to output the encoded context (𝐸ℎ). Next, this context is fed into the GPT-2 

decoder to generate the desired answer. This section formally describes the visual dialog task and then presents 

the proposed approach. 

3.1. Problem formulation 

This section formally describes the visual dialog problem and presents the details of the proposed codec 

model. 

 

Fig. 1. The overall architecture of the proposed model 

The definition proposed by Das et al. (2016) is followed for the visual dialog task. For a given question 𝑄𝑡 

about an image 𝐼 with the previous dialog history rounds (i.e. from round 0 to round 𝑡 − 1 ) formulated as 𝐻 =

{𝐶𝑐𝑎𝑝, ℎ1,  ℎ2, … , ℎ𝑡−1} where 𝐶𝑐𝑎𝑝 is the image caption treated as history round 0, ℎ𝑖 is a question/answer 

pair for each round 𝑖. In addition to a list of 100-candidate answers for each history round given as 𝐴𝑡 =
{𝐴1

𝑡 , … , 𝐴100
𝑡  }, it contains the ground-truth answer 𝐴𝑔𝑡

𝑡  as an option from the 100 options. The visual dialog 

agent should predict an answer either by discrimination or generation. In the discriminative setting, it sorts the 

candidate list so that the 𝐴𝑔𝑡
𝑡  ranked on top of the list. The ranking is done by calculating the posterior 

probability of each candidate's answer by computing the dot product between the candidate and the encoded 

context. The objective is to maximize the log-likelihood of the correct answer candidate within the given list. 

Conversely, in the generative setting, the decoder aims to generate an answer sequence that is as accurate as 

possible by maximizing the log-likelihood of the generated answer's encoded representation 𝐴𝑔𝑒𝑛
𝑡  relative to 

the ground-truth answer's encoded representation 𝐴𝑔𝑡
𝑡 . In common sense, the generative setting is more 

practical in real life as it doesn’t require pre-defined answers. 
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3.2. Cross modality encoding 

This section provides a brief introduction to the ViLBERT model in Section 3.2.1, followed by an 

explanation of its application to the visual dialog task in the proposed approach in Section 3.2.2. 

3.2.1. Preliminary on ViLBERT Model  

ViLBERT was initially pretrained on the Conceptual Captions dataset (Sharma et al., 2018) which consists 

of nearly 3 million images paired with corresponding captions. The pretraining process involved two objective 

tasks: masked language modeling (MLM) and masked image region (MIR). Subsequently, the pretrained 

model can be finetuned for various multi-modal tasks such as VQA. As shown in Fig. 2, the visual features 

are embedded and then fed into the vision-stream transformer blocks. At the same time in the second stream, 

the textual features are embedded and fed into the transformer blocks. At a certain level, co-attention is applied 

between both streams to establish a mapping between the region of interest in the image and their 

corresponding tokens in the text. Thereafter, the outputs of the two streams are fused together into a unified 

hidden representation which can be leveraged in various downstream vision-language tasks. 

 

Fig. 2. ViLBERT encoder network used in the proposed architecture 

3.2.2. VILBERT for visual dialog 

To apply ViLBERT to this task, the same procedure as in Murahari et al. (2020) is followed. It is firstly 

pretrained on the Conceptual Captions dataset with two training objectives: MLM and Masked Image Regions 

(MIR). This pretraining step aims to optimize the summation of MLM and MIR losses to efficiently predict 

the masked token conditioned on the context and predict the semantic category of the masked visual object. 

Secondly, it is finetuned on VQA before the final finetuning on the visual dialog task due to the large similarity 

between the two tasks. VQA is similar to our task in generating an answer sequence for a given question 

grounded on a given image. On the other hand, the visual dialog task has multiple question/answer rounds (i.e. 

history) which makes it more complex than VQA. Following Lu et al. (2019) VQA finetuning is done by 

training two multi-layer perceptron as a simple decoder on top of the visual-language fusion block where it 

takes the fused hidden states and predicts the answer representation. The final pretrained model is now ready 

to be finetuned on the visual dialog task.  

For visual dialog fine-tuning, MLM loss and MIR loss are used to train the model, where 15% of word 

tokens and image features are randomly masked out. The masked token is replaced with the [MASK] token, 

and the image features are zeroed out. The NSP loss is not utilized, as it is primarily designed for discriminative 



7 

settings to enhance ground-truth answer prediction and exact ranking given a candidate list, whereas the focus 

here is on the generative setting. 

For image features representation, Murahari et al. (2020) were followed, where the image undergoes an 

object extraction process via a Faster R-CNN (Ren et al., 2017) (with a ResNet-101 backbone (He et al., 2016) 

network) pretrained on Visual Genome dataset (Krishna et al., 2017). This process extracts the top 36 objects 

with corresponding bounding boxes and visual features. The visual feature embeddings along with their spatial 

information are then concatenated and passed through encoding where masking is applied as shown in Eq.(1). 

𝑉 = [𝑣1, … 𝑣36] = 𝑓𝑎𝑠𝑡 𝑅 − 𝐶𝑁𝑁(𝐼)           (1) 

where 𝑉 represents the resNet101 visual features for the 36 detected objects by Fast R-CNN.  

For text feature representation, recall this input format 𝑄𝑡, 𝐻 = {𝐶𝑐𝑎𝑝, ℎ1,  ℎ2, … , ℎ𝑡−1} where ℎ𝑖 is a question/ 

answer pair for each round 𝑖. The question and dialog history (including the caption) are concatenated together 

as one vector 𝐷 with additional special tokens for masking and padding (e.g. CLS, PAD, MASK ) thus the 

final input format for round 𝑖 is [𝐶𝐿𝑆, 𝐶𝑐𝑎𝑝, 𝑆𝐸𝑃, 𝑄1, 𝑆𝐸𝑃, 𝐴1, 𝑆𝐸𝑃, … , 𝑄𝑖, 𝑆𝐸𝑃, 𝐴𝑖 , 𝑆𝐸𝑃, 𝑄𝑡 , 𝑃𝐴𝐷] Then this 

vector passes through an encoding process where masking is applied as shown in Eq.(2). 

𝑇 = [𝑤0, … , 𝑤𝑛] = 𝑊𝑜𝑟𝑑𝑃𝑖𝑒𝑐𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝐷)        (2) 

where 𝑇 is the language features, [𝑤0, … , 𝑤𝑛] is the embedded tokens resulted from WordPiece embedding. 

As ViLBERT is an extension from BERT, it uses WordPiece embedding (Wu et al., 2016) where the text 

embedding is formulated as a summation of three vectors which are token embeddings, positional embeddings, 

and segment embeddings. Subsequently, the embedded text features 𝑇  is passed through 6 transformer blocks 

to focus on the most important parts in the text. Subsequently, cross attention is applied to get the final hidden 

states which are fed into the decoder network. Eq.(3). 

𝑉𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑣 , 𝐾𝑡 , 𝑉𝑡) ∗ 𝑉 

𝑇𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑡 , 𝐾𝑣 , 𝑉𝑣) ∗ 𝑇 

𝐸ℎ =  𝐶𝑂𝑁𝐶𝐴𝑇(𝑉𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡, 𝑇𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡)          (3) 

where 𝑄, 𝐾, 𝑉 are the query, key, and value matrices for self- attention mechanism for both modalities. 𝐸ℎ are 

the encoder’s final hidden states that are fed into the decoder network. 

3.3. Autoregressive decoder 

Autoregression is a type of statistical model that predicts the current value in a time series given all previous 

values in the same time series. Autoregressive language models (AR) provide the capability to predict the next 

word 𝑦𝑡 in a given sequence at time-step 𝑡 depending on the previously predicted words {𝑦1→ 𝑡−1} as shown 

in Eq.(4). Consequently, it has been adopted in various NLP tasks such as machine translation, text generation, 

etc. Fig. 3 illustrates the autoregressive process with an example. 

𝑦𝑡 = 𝑏 + ∑ 𝑤𝑖𝑦𝑖
𝑡−1
𝑖=1 + 𝜖𝑡             (4) 

where 𝑏 is the bias term, 𝑦𝑖 are the previously predicted tokens, 𝜖𝑡 is the time-step error and 𝑤𝑖 are the random 

weights. 

The proposed generative decoder is based on deep AR models which are feed-forward networks used for 

sequence generation tasks. These AR models have powerful capabilities that make them SOTA language 

models because of their training simplicity ( i.e. just feed-forward not recurrent) and stability (i.e. supervised 

generative nature). This stability offers easy hyperparameter tuning and inexpensive inference computations. 

Therefore, they are compelling alternatives for RNNs for sequential data and GANs for generation tasks. One 

of the AR-based generative models is the GPT-family networks. In our proposed model we employ GPT-2 for 

answer generation where it generates the required text autoregressively given the context as shown in Fig. 3. 
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Fig. 3. Illustrated autoregressive process for sequence generation 

In what follows, we present the main contribution to the visual dialog task which is employing the GPT-2 

(Radford et al., 2019) model as the autoregressive decoder. First, we will give a brief preliminary study about 

the GPT-2 model (section 3.3.1). Second, we will dive into our finetuned GPT-2 decoder on the VisDial dataset 

(Section 3.3.2). 

3.3.1. Preliminary on GPT-2 model 

Radford and Narasimhan (2018) were the first to introduce GPT-family (i.e. Generative Pre-training 

Transformers) models (Brown et al., 2020; OpenAI, 2023; Radford et al., 2019; Radford & Narasimhan, 2018) 

for improving natural language understanding and generation tasks. GPTs have shown significant 

breakthroughs in NLP tasks, allowing machines to understand and generate language with unprecedented 

quality. GPT-2 is a successor of the GPT  model which is in turn an extension of decoder-only transformer 

models.  

GPT-2 is a large-scale unsupervised language model that generates coherent text conditioned on the given 

task. It is pre-trained on a massive amount of dataset (created by Radford and Narasimhan (2018)) consisting 

of more than 8 million web pages (combining BookCorpus (Zhu et al., 2015), Common Crawl, and Web Text). 

It consists of 10 times the parameters and 10 times the dataset amount of its predecessor GPT. It is trained with 

a casual language modeling objective to efficiently predict the next word given all previous words within a 

sequence. This massive amount of data helps this objective to naturally boost the model generalization ability 

for various tasks across diverse domains (i.e. multitasking ability). GPT-2 exhibits a strong capability to 

synthesize coherent and realistic sequences of text that are often indistinguishable from human text, making it 

a valuable tool for NLP tasks, such as summarization, question-answering, and translation. 

3.3.2. GPT-2 decoder for visual dialog 

To effectively adapt GPT-2 to the visual dialog domain, its pre-trained checkpoints are strategically utilized 

as a warm start for the decoder network, relying on a fine-tuning process. This approach leveraged the model's 

existing proficiency in natural language processing and realistic text generation. However, given the absence 

of visual context understanding in the pre-trained checkpoints, it was necessary to incorporate transfer learning 

alongside fine-tuning to adapt the model to our specific objectives. 

While the underlying GPT-2 architecture remained unchanged, we modified the pre-trained weights during 

the training loop by passing the integrated visual and linguistic features (i.e. encoder hidden states) as the 

hidden state to GPT-2. Our decoder was subsequently trained in an autoregressive manner to reconstruct the 

answer sequence word by word, as illustrated in Figure 4. By conditioning the model's training on the context 

triplet (i.e. 𝐼, 𝐻, 𝑄𝑡), we enable it to generate contextually relevant responses, aligned with the visual and textual 

information provided, and demonstrate a comprehensive understanding of the multi-modal context. 

Figure 4 represents GPT-2 decoder architecture. The input embeddings represent how the decoder deals 

with the encoder's hidden states as well as the target answer embeddings. The final layer of the GPT-2 language 

model is a SoftMax activation layer which selects the word to be generated. It normalizes the input vector and 
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then outputs a vector of probabilities that sums up to 1. The value with the highest probability is the desired 

word. 

 

Fig. 4. GPT-2 decoder architecture for visual dialog 

The objective function for GPT-2 in this context is to minimize the negative log-likelihood of the generated 

response given the input image and dialog history (𝐸ℎ). This can be formulated as illustrated in Eq.(5): 

𝐿𝑜𝑠𝑠 =  − log 𝑃(𝑦̂ |𝐸ℎ,𝑦𝑔𝑡) = − log ∏ 𝑃(𝑦̂𝑖  |𝐸ℎ , 𝑦1, … 𝑦𝑖−1)𝑡
𝑖=1         (5) 

where 𝑦 is the target sequence, 𝑦̂ is the generated sequence, 𝐸ℎ represents the context triplet (𝐼, 𝑄, 𝐻) hidden 

states from the encoder. 𝑦̂𝑖 is the generated token at time step i given all previous tokens.  𝑃(𝑦̂𝑖  |𝐸ℎ , 𝑦1, … 𝑦𝑖−1) 

calculates the joint probability of the generated sequence using the softmax activation function followed by 

cross-entropy loss for each generated token. 

4. IMPLEMENTATION DETAILS 

The ViLBERT model is integrated as the encoder with GPT-2 as the decoder, and both models are trained 

end-to-end for sequence generation. The ViLBERT encoder consists of two transformer-based networks: 

vision and language streams, as illustrated in Fig. 2. The vision stream is composed of 6 layers of transformer 

blocks with 8 attention heads and a hidden state of size 1024. While for the language stream, it is based on 

𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒 architecture. It is composed of 12 layers of transformer block with 12 attention heads and a hidden 

state of size 768. For the co-attention layer, the vision stream transformer blocks are co-attended to the last 6 

transformer layers of the language stream with 8 attention heads and a hidden state of size 1024.  For 

tokenization, we use a maximum sequence length of 256. We add an encoder-decoder cross-attention 

mechanism to generate the answer grounded on the encoded context. We ran the training for 70 epochs using 

a single A100 GPU. 
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5. EXPERIMENTAL RESULTS AND DISCUSSION  

The dataset is described in Section 5.1, followed by the evaluation metrics in Section 5.2. Finally, the 

experiment and results are presented in Section 5.3. 

5.1. Dataset 

The authors evaluate their proposed approach on the VisDial v1.0 dataset (Das et al., 2016), collected by 

the AMT two-person chat about MS-COCO (Lin et al., 2014) images. The VisDial v1.0 dataset contains 

123,287 images for the training split, 2,064 images for the validation split, and 8,000 images for the testing 

split. Each image is associated with a caption sentence from COCO and one dialog (i.e. 10 rounds of question-

answer pairs). 

5.2. Evaluation metrics 

The same metrics introduced by Das et al. (2016) are used for evaluating visual dialog models. Both the 

generative and the discriminative tasks are evaluated by retrieval-based evaluation metrics which are Mean 

Reciprocal Rank (MRR), Recall @k (R @k, k = {1, 5, 10}), Mean Rank (Mean), and finally the Normalized 

Discounted Cumulative Gain (NDCG). Mean reciprocal rank is the average of 1/rank of the ground truth 

answer option. Recall@k is the percentage of questions for which the correct answer option is ranked in the 

top k predictions of a model. Mean rank is the average rank of the ground truth answer option. NDCG penalizes 

the low-ranked answer options with high relevance. The lower the value for mean is better and the higher value 

for the other three metrics is better. For the generative setting, the model uses its calculated log-likelihood 

scores for ranking the 100-candidate answers then the model is evaluated using the mentioned four metrics. 

5.3. Experiments 

GPT models have demonstrated their efficacy in conversational chatbot applications, as exemplified by the 

ChatGPT agent's ability to provide comprehensive and informative responses across a wide range of topics. In 

this paper, we applied different GPT models to investigate their efficacy in visual-based conversational 

systems. To our knowledge, we are the first to explore GPT models on the VD  task for answer generation. 

We conduct two experiments to support our hypothesis using different GPT models as our decoder. In the two 

experiments, the ViLBERT model is used as the encoder with the same architectural details mentioned above 

in section 4. 

The proposed model integrates an autoencoder (ViLBERT) and an autoregressive model (GPT-2). 

However, the disparate tokenization schemes employed by these models WordPiece for ViLBERT and byte-

pair encoding (BPE) for GPT-2 presented a challenge. During training, we observed that the BPE tokenizer 

negatively impacted the language modeling loss. To mitigate this, we implemented transfer learning and 

finetuning techniques to adapt GPT-2 to generate text using the WordPiece tokenizer, resulting in improved 

performance. 

Experiment 1 aims to investigate the extent to which the complexity of the model’s architecture affects its 

performance on the visual dialog task. To apply this objective DistilGPT-2 and GPT-2 models were used. 

GPT-2 and DistilGPT-2 are both language models developed by OpenAI, but they differ significantly in their 

size and training methodology. DistilGPT-2 is a smaller, distilled version of GPT-2. It is trained on a subset 

of the GPT-2 training data using knowledge distillation techniques (Sanh et al., 2019). A student model 

(DistilGPT-2) is trained to mimic the behavior of a teacher model (GPT-2). This allows DistilGPT-2 to learn 

from GPT-2's knowledge, even though it is smaller. This makes it more efficient to run, especially on devices 

with limited computational resources. Table 1 illustrates the architectural details of both decoder models used 

in our experiment. 

Tab. 1. Architectural details of the conducted experiments 

Experiment No. Decoder network No. of transformer blocks No. of attention heads Hidden state size 

1 DistilGPT-2 6 6 768 

2 GPT-2 12 12 768 
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To compare the performance of both models, we train each one for 70 epochs (3079 iterations/epoch) with a 

batch size of 40 using a single A100 GPU on the VisDial dataset v1.0 training set. The learning rate is 2e-5 

and linearly decays to 1e-5 after 10k iterations.  

Experiment 2 aims to evaluate the performance of the GPT-2 model with and without fine-tuning on the 

visual dialog task. GPT-2, a pretrained transformer generative model, served as the foundation for our decoder 

architecture. To assess the model's capacity for the VD task without fine-tuning, we employed a transfer 

learning approach, freezing the GPT-2 decoder checkpoints while training the ViLBERT encoder for 25 

epochs. Subsequently, we conducted a comparative experiment, fine-tuning the GPT-2 decoder and training 

the entire model end-to-end. The convergence behavior of the fine-tuned model was evaluated across varying 

numbers of epochs (25, 40, 50, 70), maintaining consistent hyperparameters throughout these experiments. 

5.4. Results and discussion 

In Experiment 1, it was observed that the GPT-2 decoder converges faster than the DistilGPT-2 decoder 

during training. Subsequently, GPT-2 outperforms DistilGPT-2 on the VisDial validation set across all 

evaluation metrics by approximately 3%, as shown in Table 2. Although knowledge distillation techniques 

have been proven to be effective in transferring knowledge from larger models to smaller ones (Z. Chen et al., 

2023; Sanh et al., 2019) there are some limitations in preserving the full complexity and nuances of the original 

model. In the current case, the VD task has a very complex nature which requires a strong model with deep 

understanding capabilities to achieve the desired objective, thus GPT-2 has outperformed DistilGPT-2 here. 

As shown in Table 2, as training continues the model performance diverges away from the global minima. 

GPT-2's larger capacity and exposure to a wider range of data make it a strong opponent for achieving superior 

results in visual dialog systems. 

Tab. 2. Evaluation results between GPT-2 And DistilGPT-2 decoders 

Decoder NDCGꜛ MRRꜛ R@1ꜛ R@5ꜛ R@10ꜛ Meanꜜ 

DistilGPT-2 61.01 49.52 39.64 59.57 66.77 17.37 

GPT-2 64.05 52.22 42.34 62.67 70.17 15.37 

In experiment 2, it was observed that the GPT-2 decoder, when used without fine-tuning, exhibited 

suboptimal performance on the visual dialog task. This was primarily attributed to the failure of the LM loss 

to converge. This can be explained by two key factors: first, GPT-2's pre-training solely on text data does not 

adequately account for the additional visual features present in the current task, impacting contextual 

comprehension. Second, the GPT-2 model, utilizing BPE tokenization, is incompatible with the tokenization 

scheme of the encoder hidden states passed to the decoder, leading to misunderstandings and erroneous 

sequence generation.  Figure 5 shows the LM convergence during training with and without finetuning of the 

GPT-2 model. 

 

Fig. 5. LM loss convergence during training for 25 epochs for both the freezed and finetuned GPT-2 
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In contrast to the GPT-2 model with frozen parameters, which exhibited LM loss oscillatory convergence 

between 12 and 11, the end-to-end trained GPT-2 model demonstrated a positive impact on language modeling 

performance, converging to a value of 1.2 after training for 70 epochs. 

From previous experiments, we observed that our best model is the finetuned GPT-2 trained end-to-end 

with ViLBERT. We compare our approach with the state-of-the-art models regarding the generative setting as 

shown in Table 3. 

Tab. 3. Comparison with the state-of-the-art model on val. Split VisDial dataset V1.0. ꜛ  Indicates higher is better and ꜜ  indicates 

lower is better 

Model NDCGꜛ MRRꜛ R@1ꜛ R@5ꜛ R@10ꜛ Meanꜜ 

MN (Das et al., 2016) 51.86 47.99 38.18 57.54 64.32 18.60 

HCIAE (Lu et al., 2017) 59.70 49.07 39.72 58.23 64.73 18.43 

CoAtt (Wu et al., 2018) 59.24 49.64 40.09 59.37 65.92 17.86 

Primary (Guo et al., 2019) - 49.01 38.54 59.82 66.94 16.60 

DMRM (F. Chen et al., 2020) - 50.16 40.15 60.02 67.21 15.19 

ReDAN (Gan et al., 2019) 60.47 50.02 40.27 59.93 66.78 17.40 

DAM (Jiang et al., 2020c) 60.93 50.51 40.53 60.84 67.94 16.65 

KBGN (Jiang et al., 2020a) 60.42 50.05 40.40 60.11 66.82 17.54 

LTMI (Nguyen et al., 2020). 63.58 50.74 40.44 61.61 69.71 14.93 

MITVG (F. Chen et al., 2021) 61.47 51.14 41.03 61.25 68.49 14.37 

UTC (C. Chen et al., 2022) 63.86 52.22 42.56 62.40 69.51 15.67 

GST (Kang et al., 2023) 65.47 53.19 43.08 64.09 71.51 14.34 

Ours 64.05 52.22 42.34 62.67 70.17 15.37 

 

Some of the state-of-the-art models are not transformer-based which are: MN (Das et al., 2016), HCIAE 

(Lu et al., 2017), CoAtt (Wu et al., 2018), Primary (Guo et al., 2019), DMRM (F. Chen et al., 2020), ReDAN 

(Gan et al., 2019), DAM (Jiang et al., 2020c), KBGN (Jiang et al., 2020a), and LTMI (Nguyen et al., 2020). 

While the rest are transformer-based approaches which are: MITVG (F. Chen et al., 2021), UTC (C. Chen et 

al., 2022), and GST (Kang et al., 2023). The proposed approach is evaluated on the validation split of VisDial 

v1.0, following the methodology of previous works. The model demonstrates comparable performance on the 

VisDial v1.0 dataset, surpassing most prior approaches by a significant margin. Specifically, it achieves 

improvements of 0.19 in NDCG, 0.27 in R@5, 0.66 in R@10, and 0.3 in Mean, falling short only to Kang et 

al. (2023). 

The findings highlight the promising potential of GPT-2 for multi-modal tasks, as evidenced by its strong 

performance with basic training. In comparison, Kang et al. (2023) (GST) approach, which leverages a 

substantially larger dataset (12.9 M), required more training time and computational resources. Our model, 

trained solely on the VisDial dataset (1.2 M), closely approached their best results, demonstrating the 

effectiveness of GPT-2. In addition, the complexity of our proposed models is one-third less than that of their 

proposed architecture because of the decoder parameters (117 M vs. 340 M). Moreover, the UTC (C. Chen et 

al., 2022) algorithm demanded significant computational power (8 A100 GPUs) yet our model outperforms it 

across NDCG, R@5, R@10, and Mean metrics. Furthermore, MITVG (F. Chen et al., 2021) relied on a single 

transformer-based encoder, without a decoder, for understanding and generation tasks which hindered their 

results.  

Furthermore, the generated text exhibited a greater degree of realism and informativeness compared to the 

ground truth responses, as illustrated in Table 4. In certain instances, the model's generated responses are more 

aligned with the visual context and provide more specific details (highlighted in blue text), surpassing the 

ground truth in terms of relevance and accuracy. Examining the first sample, the generated answer for the 

initial question (Yes, with jet planes) provides more comprehensive and informative information compared to 

the ground truth answer (Yes). In a real-world scenario, such as an AI copilot, a simple 'Yes' response would 

be insufficient. However, the model exhibited an error in the fifth question, likely due to confusion between 

'jet steam' discussed in the fourth question and the presence of clouds. Furthermore, in the ninth question, while 

our model produced a factually correct answer (i.e., 2), it did not align with the intended correct answer (i.e., 

3). This discrepancy may be attributed to the influence of the eighth question, which focused on identifying 

pilots clearly visible in jet #3. Consequently, when prompted to identify the closest jet in the subsequent 

question, our model prioritized proximity to jet #3, potentially overlooking other relevant factors. 
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The study suggests that autoregressive models, such as GPT-2, are superior to autoencoder models for 

visual dialog tasks. While GPT-2 demonstrates a remarkable capacity for generating realistic text, it exhibited 

limitations in achieving the desired level of contextual understanding when applied to the visual dialog task, 

compared to the GST model. This discrepancy represents a potential avenue for future research. 

Tab. 4. Samples from the generated answers. Text in blue indicates that the generated answer is not the same as the ground 

truth answer but it logically can be a correct answer. Text in red indicates a wrong-generated answer. 

Image & caption Questions 
Ground 

truth 

GPT-2 

generated 

answers 

 

3 blue colored jets performing barrel rolls through the 

sky 

Q1: is the sky clear? Yes Yes, with jet 

planes. 

Q2: are there other 

colors on the jets? 

Blue and 

yellow 

Blue and orange 

and black tip. 

Q3: do the jets have 

numbers? 

Yes Yes 

Q4: is there steam 

coming out of the 

jets? 

Yes Yes 

Q5: are there any 

clouds? 

No Yes 

Q6: can you see the 

pilots? 

Yes Yes 

Q7: are there any 

words on the jets? 

Yes Yes, and on the 

tail propeller. 

Q8: are the pilots 

wearing helmets 

Yes Yes 

Q9: what number is 

the closest jet? 

3 2 

Q10: are any of the 

jets upside down? 

Yes Yes 

 

 

The shopping center has multiple cars that are pulled up 

to it 

Q1:  is this in color? Yes Yes 

Q2: are the cars 

parked? 

Yes Yes, on the sides 

of the street 

Q3: is this a strip 

mall? 

Yes Yes 

Q4: is there a 

restaurant? 

I can't see 1 Yes 

Q5: are the cars 

parked right in front 

or in a parking lot? 

Yes Yes 

Q6: are any of the cars 

white? 

No No 

Q7: are any of the 

vehicles suv's? 

Yes Yes 

Q8: are there any 

black vehicles? 

Yes Yes 

Q9: is there a health 

store? 

Yes Yes 

Q10: are there people? I only see 1 Yes 2 in front of 

the store 

6. CONCLUSION AND FUTURE WORK 

This paper introduces a generative model for visual dialog tasks, employing a transformer-based encoder-

decoder architecture. ViLBERT, a transformer-based model encodes the input triplet (dialog history, image, 

and current question) into a contextual vector representation. GPT-2, another transformer-based model, is 
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employed as the decoder, generating an answer grounded in the established context. The proposed model, 

trained and evaluated on the VisDial dataset v1.0, demonstrates comparable performance to state-of-the-art 

models. Notably, top-tier scores were achieved in NDCG (64.05), R@5 (62.67), and R@10 (70.17), surpassing 

most prior works.   

Addressing the research question, 'What are the advantages and limitations of using an autoregressive 

decoder model for visual dialog to generate responses that are consistent with the multi-modal context?', it can 

be concluded that autoregressive models, particularly transformer-based AR models, are highly effective for 

sequence generation tasks, especially in conversational systems. These models demonstrate a strong capability 

to enhance the quality, realism, and engagement of generated responses with minimal effort. However, their 

application to complex tasks such as visual dialog requires significant computational resources, posing a 

potential challenge in this domain. 

Future work directions will investigate the integration of advanced techniques such as contrastive learning 

to enhance the model’s understanding and response quality. Furthermore, few-shot and zero-shot learning 

techniques will be explored to enable the model to adapt to datasets with limited or no labels. Additionally, 

the continual evolution of transformer-based language models motivates an investigation into their 

applicability within the context of the visual dialog task. Moreover, the practical implications of the model in 

various real-world applications will be examined to develop more impactful systems. These potential 

applications can include navigation tasks where an agent must comprehend instructions and utilize visual 

observations to navigate an environment. Robotic systems enable the dialog agent to interact with the 

environment, execute actions, and provide feedback based on visual observations. Education by integrating 

the model into educational systems to facilitate the explanation of complex scientific concepts to students 

through interactive simulations and visualizations within a conversational framework. Assistive technologies 

which employ the model to assist visually impaired individuals in interacting with their surroundings. 
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