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Abstract 

Recent advancements have shown that shallow and deep learning models achieve impressive performance 

accuracies of over 97% and 98%, respectively, in providing precise evidence for malaria control and 

diagnosis. This effectiveness highlights the importance of these models in enhancing our understanding of 

malaria management, which includes critical areas such as malaria control, diagnosis and the economic 

evaluation of the malaria burden. By leveraging predictive systems and models, significant opportunities 

for eradicating malaria, empowering informed decision-making and facilitating the development of 

effective policies could be established. However, as the global malaria burden is approximated at 95%, 

there is a pressing need for its eradication to facilitate the achievement of SDG targets related to good 

health and well-being. This paper presents a scoping review covering the years 2018 to 2024, utilizing the 

PRISMA-ScR protocol, with articles retrieved from three scholarly databases: Science Direct (9%), 

PubMed (41%), and Google Scholar (50%). After applying the exclusion and inclusion criteria, a final list 

of 61 articles was extracted for review. The results reveal a decline in research on shallow machine 

learning techniques for malaria control, while a steady increase in deep learning approaches has been 

noted, particularly as the volume and dimensionality of data continue to grow. In conclusion, there is a 

clear need to utilize machine learning algorithms through real-time data collection, model development, 

and deployment for evidence-based recommendations in effective malaria control and diagnosis. Future 

research directions should focus on standardized methodologies to effectively investigate both shallow and 

deep learning models. 

1. INTRODUCTION 

In recent time, machine learning algorithms are expanding the frontiers of modern computing applications. 

Despite being a computationally intensive model that relies on complex algorithms, it provides a veritable 

software tool for analyses of complex problems embedded in large data (Sarker, 2021). Being a subfield of 

Artificial intelligence (AI) (Helm et al., 2020; Joshi, 2020), its performance is driven by the availability of 

voluminous but structured data for meaningful training and testing (otherwise referred to as learning process) 

of its model, without explicitly being programmed for the task (Lestarini et al., 2018) as obtained in the rule-

based approach. The process of model learning from the intrinsic patterns associated with historical data is a 

characteristic feature of AI's model that possesses an inert ability to replicate human cognitive functions, such 

as learning and visual perception to predict the future (Qiu et al., 2016). Apart from solving complex problems 

involving large data, its level of preciseness, transparency, and speed increases the chances of its adoption in 

different areas of application.  

For instance, the application of machine learning in healthcare offers remarkable opportunities to analyze 

daily health data to enhance patient care and timely diagnosis of disease (Mbunge & Batani, 2023; Fuhad et 

al., 2020). Other areas of application of machine learning are education (Tiwari, 2023), government (Chen, 

2022), agriculture (Sharma et al., 2021), transportation (Li & Xu, 2021), commerce (Liu, 2022), and more. 

Several machine learning approaches are defined based on the characteristic nature of the available data such 

as: supervised, unsupervised, reinforcement learning and so on. Supervised learning utilizes labeled data and 

a mapping function to assign input features to the target output during predictive model training. The learning 

process of the trained model is subjected to test data sets (i.e. real- world data), to determine whether it can 

respond to classification or regression tasks accurately (Alanazi, 2022). On the contrary, unsupervised learning 
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utilizes unlabeled data (Eckhardt et al., 2023), while semi-supervised machine learning combines labeled and 

unlabeled data to perform its various tasks.  

Other techniques are reinforcement learning where the predictive model acts in a way to be rewarded by 

the environment (Verma et al., 2022), and transfer learning where the pre-trained model is incrementally 

trained for the desired accuracy (Ekpenyong et al., 2021). These approaches are often implemented through 

shallow or deep learning techniques (Lalli & Amutha, 2020). Shallow learning leverages a limited number of 

hidden layers in partially or fully interconnected neural networks to identify data patterns without explicit 

programming (Jayatilake et al., 2021). In contrast, deep learning employs multiple hidden layers of neural 

networks to automatically model complex non-linear relationships within the data, enhancing analytical 

capabilities (Jiang et al., 2018; Alnussairi & Ibrahim, 2022). However, both shallow and deep learning are 

studied in malaria surveillance and control, diagnoses as well as drug development (Siłka et al., 2023). The 

evidence(s) generated by machine learning algorithms are output of the learning models or most relevant 

feature(s) that is vital to decision-making and policy formulation (Gilat et al., 2024). 

The workflow of machine learning process comprises the data collection phase that accepts data from single 

or multiple source(s) as input. The data is further processed to remove irrelevant features and select relevant 

ones for further analysis (Zelaya, 2019). Examples of data collection tools are: sensors, cameras, satellites, 

microphones, slides, scanners, thermometers and more. Thereafter, the preprocessed data is partitioned into 

both the training and testing sets and subjected to model learning task. During the learning wherein the training 

set is first utilized to train a new model followed by the test data. To test the suitability of the trained model 

for deployment, performance evaluation using accuracy parameters (e.g. RMSE, MAE, F1-score, Precision, 

Recall, ROC-AUC and more) is established to measure the validity of evidence that is generated by the model. 

These parameters could be further fine-tuned for improved model performance. Figure 1 shows the overall 

workflow of machine learning process. Typical examples of machine learning algorithms are k-nearest 

Neighbour (kNN), Random Forest (RF), Artificial Neural Network (ANN), Support Vector Machine (SVM), 

Decision Tree (DT), and more (Mahesh, 2020; Oladipupo, 2010). 

 

Fig. 1. Workflow of machine learning showing phases of different tasks (adapted from Singh et al., 2023) 

The preference for machine learning algorithms stems from the need to gain insight into the accumulated 

data resulting from the advancement in the networking and communication infrastructure that supports data 

generation from multiple sources via collaboration technologies, e.g. Internet of Things (IoT) and geospatial 

technologies (Udo & Ekpenyong, 2020). Therefore, to ensure improved performance accuracy and speed in 

the era of big data (James & Osubor, 2023), adopting models/algorithms with proven effectiveness to explore 

intricate patterns inherent in the data is ideal to generate precise evidence to support decision-making and 

planning required for formulation of policies. However, a few studies adopt machine learning algorithms for 

malaria control measures, thereby hindering evidence-based recommendation to tackling the menace of 

malaria (Nguyen et al., 2019). Existing studies on the application of machine learning to generate evidence for 

the eradication of the malaria burden are available at various levels of malaria control, diagnosis, and drug 

development (Golumbeanu et al., 2022; Mswahili et al., 2021; Neves et al., 2020).  
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Malaria is one of the febrile diseases transmitted by female Anopheles mosquitoes and caused by 

Plasmodium parasites (Fikadu & Ashenafi, 2023). Despite being classified as an infectious disease, it is both 

preventable and curable (Basu & Sahi, 2017). According to the distribution of malaria incidence by the World 

Health Organization (Venkatesan, 2024), an estimated 249 million malaria cases were recorded globally, 

indicating a 5 million increase in the previous year, 2021. In 2022, approximately 223 confirmed malaria cases 

per 1,000 individuals at risk were reported in the sub-Saharan Africa, resulting in increased burden of the 

disease in the region. Notably, there was a 4% reduction in the mortality incidence rate from 2020 to 2022, 

indicating progress in malaria control and diagnosis via strategic health interventions in the region 

(Venkatesan, 2024). The graphs illustrating malaria incidence (per 1000 population at risk) between 2000 and 

2023 for global and sub-Saharan African cases, are shown in Fig. 2(i) and Fig. 2(ii), respectively. Similarly, 

malaria mortality between 2000 and 2023 for global and sub-Saharan African cases are shown in Fig. 3(i) and 

Fig. 3(ii), respectively.  

Specifically in Nigeria, malaria is one of the killer diseases (Kolawole et al., 2023; Oladipo et al., 2022; 

Ahmed et al., 2019) with annual mortality predominantly among children between the ages of 0-5 years and 

pregnant women. The prevalence of malaria infection across West Africa where Nigeria has the highest 

percentage prevalence of 27% among other countries is illustrated in Fig. 4. 

 

                           (i) Global 

  

           (ii) Sub-Saharan Africa 

 

Fig. 2. Malaria incidence (per 1000 population at risk) between 2000 and 2023 for 

(i) Global and (ii) sub-Saharan Africa cases (Venkatesan, 2024) 

 

(i) Global 

 

(ii) Sub-Saharan Africa 

Fig. 3. Mortality of malaria between 2000 and 2023 for 

(i) Global and (ii) sub-Saharan Africa cases (Venkatesan, 2024) 

The prevalence of increasing malaria incidence presents a huge burden on states, regions, and nations, 

despite interventions and programmes targeted at populace to reduce menace of malaria. This menace could 
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be attributed to many factors among others, such as insufficient evidence to guide strategic interventions and 

non-adherence to sanitation standards that inhibit the rapid breeding of mosquitoes (Gooch, 2017). Others are 

illiteracy level among households and improper use of insecticide-treated mosquito nets, dirty source drinking 

water, poor roofing/floor materials, and favorable conditions for mosquitoes to thrive e.g. dirty environment 

filled with stagnant water and warm temperatures (Bassey & Izah, 2017; Tetteh et al., 2023). 

 

Fig. 4. Percentage of malaria prevalence in sub-Saharan Africa (Venkatesan, 2024) 

Due to the availability of data on malaria incidence accumulated over the years concerning malaria vector, 

host and environment, there is the need to gain insights into the data to accelerate generation of evidence for 

malaria control and interventions for eradication of its burden (Haileselassie et al., 2023). However, existing 

studies on the application of machine learning in malaria are focused on the eradication of the burden through 

diagnosis and drug development (Ikerionwu et al., 2022; Jdey et al., 2023; Tai et al., 2022; Balerdi-Sarasola et 

al., 2024; Makondo et al., 2021). On the contrary, a few studies on the control of malaria focused on 

surveillance and estimation of malaria burden (Sarma et al., 2019; Brown et al., 2020), using statistical 

modeling instead of machine learning algorithms. Statistical modeling is inadequate to handle analytics 

involving high dimensional features with high degree of accuracy (Khan et al., 2020) I terms of the estimation 

of malaria burden (Taye et al., 2024; Sahu et al., 2023; Qadri et al., 2023; Deshmukh & Parag, 2023; Jahan & 

Alam, 2023); Kundu & Anguraj, 2023).  

Therefore, based on the effectiveness of machine learning in handling complex data-driven tasks with 

accuracy, this scoping review seeks to identify the evidence(s) of machine learning algorithms that supports 

the eradication of malaria burden under the following research questions: (1) What are the strengths and 

weaknesses of existing statistical modeling research in supporting efforts toward the eradication of the malaria 

burden? (2) What types of evidence do existing machine learning studies provide in support of malaria control 

and diagnosis efforts, and how do these contributions align with the goal of eradicating the malaria burden? 

(3) How do predictive systems provide precise and actionable evidence to support the eradication of the malaria 

burden? To provide accurate responses to the following questions, a total of 3022 relevant articles were 

retrieved and reviewed from different scholarly databases such as ScienceDirect (9%), PubMed (41%), and 

Google Scholar (50%) as shown in Fig. 5. The remaining part of this paper is organized as follows: section 1.1 

presents the introduction. Section 2.1 describes the method and the results are presented in section 3.1. This 

section is followed by a discussion in section 4.1 and conclusion in section 5.1. 



 

48 

 

Fig. 5. Percentage distribution of retrieved articles from the scholarly databases, namely: 

Science Direct, PubMed and Google Scholar 

This review aims to evaluate the literature on the application of different approaches of machine learning 

algorithms towards generating precise evidence for eradication of malaria burden. Our approach to review is 

defined under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for 

Scoping Reviews (PRISMA-ScR) (Lukwa et al., 2024) guidelines as follows: definition of research questions, 

search for articles, filtering of articles, data extraction and synthesizing of results. 

2. SCOPE OF THE REVIEW 

The reviewed studies primarily concentrate on the diagnosis and control of malaria. Additionally, studies 

related to malaria surveillance and prevention is included within the broader context of malaria control in this 

analysis. For example, to comprehend the application of shallow and deep learning in malaria control studies, 

Comert et al. (2020) highlight the importance of detecting outbreaks. Additionally, other research efforts have 

investigated the prediction of such outbreaks through the examination of meteorological and climatic data 

(Singh et al., 2023; Stephen et al., 2021; Martineau et al., 2022). Moreover, Harvey et al. (2021) discuss the 

early prediction of malaria risk and identify other significant contributing factors in their studies. 

2.1. Search for relevant articles 

To overcome the challenge of retrieval of irrelevant articles in the subject area of Computer Science query 

terms are selected and formulated as logical search strings depicted as Q1, Q2, Q3, Q4, Q5. After the initial 

search in the subject area of Computer Science, voluminous articles were retrieved resulting in 3022 articles. 

However, the final searches were streamlined to articles published between 2018 - 2024 in Science Direct, 

PubMed, and Google Scholar. The logical search strings used for the retrieval of articles are as follows: 

Q1: Machine learning AND malaria burden estimation  

Q2: Machine learning AND malaria diagnosis  

Q3: Machine learning AND malaria predictions 

Q4: Machine learning AND malaria prevention AND control  

Q5: Machine learning AND cost burden of malaria  

These search strings aim to enhance the relevance of the search results to the topic at hand. It also facilitates 

a more focused inquiry and captures the interactions between key concepts. This constructive approach 

streamlines the research process, ensuring the findings are both relevant and efficient in addressing the specific 

area of interest in the research.  

The retrieved articles from the respective scholarly databases were subjected to identification, screening, 

eligibility and inclusion phases of the PRISMA-ScR protocol as illustrated in Fig. 6. 

2.2. Article selection and filtering 

Based on exclusion and inclusion criteria, a total of 2963 and 61 articles were excluded and included, 

respectively in the final list of articles for the review. These included articles were also independently filtered 

by machine learning researchers. The exclusion and inclusion criteria considered are outlined as follows. 
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2.3. Exclusion criteria 

The exclusion criteria considered in this review paper are as follows: Articles not published in English, 

Articles published in book chapters, encyclopedias, review papers, and conference abstracts 

 

Fig. 6. PRISMA-ScR protocol showing Identification, Screening, Eligibility, and Included phases of  

retrieved articles on the machine learning evidence towards eradication of malaria burden 

2.4. Inclusion criteria 

This paper covers the following articles: Research articles published between 2018-2024 inclusively 

including journals and conference papers indexed by IEEE related to the subject area of Computer Science. In 

all, a total of 61 articles were finally considered as the final full-text included in the review. 

2.4.1. Extraction of features from the retrieved data 

To provide answers to the research questions, relevant features of the articles were extracted and 

summarized for this study. The features of the articles reviewed, labeled A1, A2, …, A6, were analyzed to 

address the research questions and summarized in Tables 3 to 6. 

A1: Objective of the study 

A2: Source of data 

A3: Algorithm(s) defined in the methodology 

A4: Evaluation parameter 

A5: Machine learning (i.e. shallow or deep learning approach) 

A6: Significance of study in terms eradication of malaria burden. 

2.5. Results 

Distribution of Statistical Modeling and Machine Learning (either Shallow of Deep Learning) Articles 

towards Generation of Precise Evidence for Eradication of Malaria Burden. 

From the number of relevant articles selected for review in the subject area of Computer Science on the 

application of machine learning towards evidence generation for eradication of malaria burden as shown in the 

PRISMA-ScR in Fig. 6, it is observed that statistical modeling and shallow machine learning approaches are 
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often used in the malaria control studies with a few related works using deep learning approach. This trend 

poses a setback to the generation of precise evidence and also presents research gaps confronting the malaria 

burden at the early stage of prevention and control through real-time surveillance with a high-performance 

machine learning approach. However, there is a notable increase in transiting from shallow to deep learning 

research approaches in malaria diagnosis, which could lead to improved accuracy (Hoyos & Hoyos, 2024). 

Similarly, as the number of researches in malaria control increases, there is a corresponding minimal increase 

in the malaria diagnosis research in the cases of statistical modeling and shallow machine learning.  

On the contrary, a decrease in the number of research articles on malaria control could be attributed to the 

prevalence of higher malaria burden due to inadequate evidence to support malaria control measures using 

machine learning. Whereas the increase in the number of research articles on malaria diagnosis could be 

attributed to improved health outcomes in disease diagnosis. Therefore, the research gap posed by the 

inadequacy of precise evidence could be bridged with the application of modern research techniques using 

shallow or deep learning to generate precise evidence that would guide decision-making and policy 

formulation towards the eradication of malaria burden in terms of control and prevention (Adegbite, 2023). 

The number of research articles using either shallow or deep learning for provision of evidence in malaria 

control and diagnosis is shown in Fig. 7. 

 

Fig. 7. Distribution of the number of reviewed articles involving statistical modeling,  

shallow and deep learning towards eradication of malaria burden in terms of control and diagnosis 

The annual distribution of published articles focusing on malaria control and diagnosis, leveraging both 

shallow and deep machine learning techniques, is illustrated in Fig. 8. The data indicate a notable increase in 

researchers' interest in adopting deep learning approaches from 2018 to 2024. In contrast, there has been a 

decline in the application of shallow machine learning models and algorithms throughout the same period. 

This transition from shallow to deep learning could be attributed to the growing demand for precise evidence 

in the effort to eradicate the malaria burden, particularly as the volume and complexity of available data have 

increased in recent years. 

 

Fig. 8. Yearly distribution of reviewed articles involving malaria control and diagnosis  

using shallow and deep machine learning models/ algorithms 
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Distribution of the Reviewed Articles on Application of Machine Learning for Malaria Control and 

Diagnosis 

An analysis of the reviewed articles reveals a significant increase in the number of publications on shallow 

and deep learning applications for malaria diagnosis in 2023. Based on this trend, it is expected the number of 

these articles will likely surpass that of previous years at the end of 2024. Figure 9 illustrates the trend of 

researches using shallow and deep learning in malaria diagnosis and control. From the graph in Fig. 9, it is 

evident that shallow and deep learning are mostly applied in the diagnosis rather than malaria control where 

voluminous data characterized with high-dimensional features is associated with clinical data. However, the 

volumes of data generated during malaria surveillance in the era of Internet of Things (IoT) technology require 

a solution approach capable of handling large data sets with speed and accuracy (Ayalew et al., 2024). 

Therefore, adoption of machine learning approach to provide evidence for malaria control can lead to strategic 

planning and optimal resource allocation for the heavily burdened households. 

 

Fig. 9. Distribution of the number of reviewed articles on application of machine learning for malaria control and diagnosis 

From the summary of the application of machine learning algorithms in the eradication of malaria burden, 

it is also observed that evidence generated from the core machine learning task is focused on the eradication 

of burden in terms of diagnosis, with a few studies on the control of malaria using either shallow or deep 

learning approach. The dearth of literature on malaria control in recent studies is synonymous with high malaria 

burden on households despite several interventions to address the menace. The availability of precise 

knowledge control can minimize the disease burden, support informed decision-making, and policy 

formulation to guide strategic interventions and planning (Bent et al., 2018; Awine et al., 2017). However, 

statistical modeling approaches estimated the impact and quantified malaria burden on households using 

regression analysis with single value output. This value provides an estimate of malaria burden in terms of 

high or low burden. One of the strengths of this model is its transparency, which effectively identifies key 

predictors and clarifies how each variable influences the outcome. This clarity not only enhances the model's 

interpretability but also empowers stakeholders to understand the intricate relationships among variables, 

ultimately leading to more informed and strategic decision-making. Apart from the inability of the model to 

perform multiclass classification, generalization of solutions with new sets of real-world data with high 

dimensionality (Conlin, 2024) presents a research gap that machine learning can address with accuracy.  

The summary of the reviewed statistical modeling approaches towards the eradication of malaria burden is 

shown in Table 1. The categories of features from malaria indicator and demographic health surveys data 

(Affiah et al., 2022) used with the statistical modeling in Table 1 to estimate malaria burden is presented in 

Table 2. These categories of features include community, household, and socio-economic features. Other 

features are sociodemographic features, behavioural risk, treatment and women features. 
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Tab. 1. Summary of existing application of statistical modeling in eradication of malaria burden in terms of control 

Ref Objective Data source Methodology Strength Significance 

(Affiah et 

al., 2022) 

Estimate 

malaria 

burden 

Household 

Survey 

Multivariate logistic regression 

model using direct and indirect 

cost data. 

Classification and 

single valued output 

Malaria 

control 

(Ayogu 

et al., 

2021)  

Estimate 

malaria 

burden 

Survey data 

from patient 

folder 

Descriptive statistical model 

using direct medical cost 

Classification and 

single valued output 

Malaria 

control 

(Tafera et 

al., 2020)  

Estimate 

malaria 

burden 

Household 

Survey 

Multivariate logistic regression 

analysis using economic and 

associated data features. 

Classification and 

single valued output 

Malaria 

control 

(Paudel 

& Pant, 

2020)  

Estimate 

malaria 

burden 

Household 

Survey 

Ingredient-based approach 

using probit regression model 

Classification and 

single valued output 

Malaria 

control 

(Singh et 

al., 2019)  

Estimate 

malaria 

burden 

Household 

Survey 

Human capital method (i.e. 

Linear model) 

Classification and 

single valued output 

Malaria 

control 

(Dalaba, 

et al., 

2018)  

Estimate 

malaria 

burden 

Household 

survey 

Quantitative statistical design 

using t-test using care seeking 

and cost of treatment data for 

under-five years children in 

Ghana. 

Classification and 

single valued output.  

Malaria 

control 

Tab. 2. Existing studies on categories of features used from malaria indicator and demographic health surveys data to estimate 

the burden of malaria 

Category Example of features covered Reference 

Geolocation (or 

community) 

features) 

Region, Types of places of residence (Patrick et al., 2023; Deressa et 

al., 2023) 

Household 

features 

Source of drinking water, Main floor material, Main roof 

material, Type of toilet facility, Household has electricity, 

Toilet facility shared with other households, Type of cooking 

fuel 

(Yang et al., 2019; Woolley et 

al., 2022; García et al., 2023) 

Socio-economic 

features 

Educational attainment, Husband/partner's occupation, 

Husband/partner worked in last 7 days/12 months, 

Respondent currently working. Literacy, Wealth index 

combined 

(Anjorin et al., 2023; Degarege 

et al., 2019; Sharma et al., 2021; 

Tefera et al., 2020) 

Socio-

demographic (or 

individual) 

features 

Number of households members, Number of children under 

5 years, Sex of head of household, Age of head of household, 

Age of child in month, Child sex, Ideal number of children, 

Educational attainment, 

Husband/partner's occupation, Husband/partner worked in 

last 7 days/12 months, Current work status of household 

member/head, Respondent currently working, Relationship 

of head of household with members. 

(Awosolu et al., 2021; Tefera et 

al., 2020; Ojurongbe et al., 

2023) 

Behavioural risk 

features 

Has mosquito bed net for sleeping, Availability of Children 

under 5 years who slept under, mosquito bed net last night 

(DHS questionnaire), Number of mosquito bed nets, Number 

of children who slept under mosquito bed net previous night 

Type of mosquito bed net(s) used last night. 

(Finda et al., 2019; Bhatt et al., 

2015; Patrick et al., 2023) 

Malaria treatment 

features 

Cost of treatment for fever (in Naira), Final result of malaria 

from blood smear test, Result of malaria rapid test, Status of 

fever in last two weeks, Treatment for fever in last two 

weeks, Was Child tested for malaria?, Number of days after 

fever began treatment /advice was sought, Place where first 

treatment was sought. 

(Oyewola et al., 2022; Apeagyei 

et al., 2024; Peprah et al., 2024) 

Women features Currently pregnant? Duration of current pregnancy in 

months. 

(Fana et al., 2015; Chijioke-

Nwauche et al., 2020) 
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2.6. Research questions 

1. What are the strengths and weaknesses of existing statistical modeling research in supporting efforts 

toward the eradication of the malaria burden?  

To quantify the malaria burden on households, a few existing studies adopted regression analysis to estimate 

the burden of malaria (Eze & Asogwa, 2021). Out of the total of eight articles reviewed as shown in Table 

1, 87.5% of the reviewed articles adopted regression models to analyze household survey data aimed at 

estimating malaria burden on households, while 12.5% combined the generalized linear model and machine 

learning to generate evidence as a multiclass classification task (Jahan & Alam, 2023; Diker, 2022; Brown et 

al., 2020). The multivariate regression (Affiah et al., 2022, Tefera et al., 2020), quantitative and descriptive 

statistical modeling (Dalaba, et al., 2018; Ayogu et al., 2021) as well as linear model (Paudel & Pant, 2020) 

produce the result as a single value weighed as binary classification output in terms of predicting either high 

or low malaria burden on households. Although the output generated by the statistical modeling remains valid 

evidence to guide decision-making and planning (Treskova, 2020), it lacks the preciseness required for 

strategic prevention and control of malaria in real-time (Hemingway et al., 2016). 

Additionally, the inherent inability of the regression models to generalize solutions given real-world data 

as well as the superimposition of predefined model(s) on the available data often leads to model bias and over-

fitting (Hastings et al., 2020). 

2. What types of evidence do existing machine learning studies provide in support of malaria control and 

diagnosis efforts, and how do these contributions align with the goal of eradicating the malaria burden? 

The evidence(s) provided by the existing application of machine learning algorithms towards the 

eradication of malaria burden is focused on the use of both shallow and deep learning approaches (Mbunge et 

al., 2023). A summary of existing studies on the application of machine learning models used in the eradication 

of malaria burden in terms of control and diagnosis is presented in Table 3. In Hoyos and Hoyos (2024), Liu 

et al. (2023), studied deep learning with Yolov8, Yolov5and CNN, respectively using blood smear images to 

detect the number of plasmodium parasite and leukocytes to provide a model for malaria diagnosis. Other deep 

learning tasks involving malaria diagnosis were studied to support analysis of parasitized and uninfected red 

blood cells (Maturana et al., 2023 ), forecast malaria impact on population using CNN (Hemachandran et al., 

2023), perform malaria diagnosis with CNN (Loddo et al., 2022; Onuche-Ojo et al., 2024). The performance 

of the evidence generated by the developed deep learning model is evaluated with parameters such as accuracy, 

sensitivity, specificity, Area under Curve- Receiver Operating Characteristics, precision, recall, and so on.  

Similarly, shallow learning tasks used in malaria diagnosis are studied in terms of the classification of 

malaria-related data types (Barraclough et al., 2024; Okagbue et al., 2020), analysis of patient’s malaria data 

(Bilal, 2023; Qadri et al., 2023), misdiagnosis (Okagbue et al., 2020). 

Tab. 3. Summary of existing studies on application of machine learning models in eradication of malaria burden in terms of 

diagnosis 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Hoyos & 

Hoyos, 

2024) 

Detect and count 

parasites along with 

leukocytes 

Thick blood 

smear images 

from Makerere AI 

Lab, Uganda 

Yolov8 Accuracy 

Sensitivity 

Specificity 

mAP 

Deep Malaria 

diagnosis 

(Barraclou

g et al., 

2024) 

Classify malaria 

types 

Patient file 

Survey  

NB, RF, 

Meta 

Bagging, 

and Voting 

ACC, TP, 

FP, 

Precision, 

Recall, F-

Measure,  

Shallow Malaria 

diagnosis 

    AUC-ROC, 

speed and 

Confusion 

Matrix 

  

(Bilal, 

2023) 

Analyze patients' 

malaria data  

Kaggle J48 Tree, 

Naive 

Bayes, 

SVM, KNN, 

and Logistic 

Regression 

AUC and 

accuracy 

Shallow Malaria 

diagnosis 
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Tab. 3. Summary of existing studies on application of machine learning models in eradication of malaria burden in terms of 

diagnosis, continuation 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Qadri et 

al., 2023) 

Analyze malaria 

images of 

Parasitized and 

uninfected red 

blood cells 

NIH Malaria 

Dataset  

 (NASNet 

and NNR 

Accuracy, 

Target class, 

Precision, 

Recall F1 

Shallow Malaria 

diagnosis 

(Okagbue 

et al., 

2020) 

Misdiagnosis Peered reviewed 

data article 

Adaptive 

boosting 

algorithms 

Accuracy, 

precision, 

error rate 

Shallow Malaria 

diagnosis 

(Shi et al., 

2020) 

Classify 

plasmodium blood 

smear images 

Malaria images 

from Central 

South Hospital of 

Wuhan 

University, China 

Ensemble 

neural 

network 

Accuracy Shallow Malaria 

diagnosis 

(Maturana 

et al., 

2023) 

Analyze malaria 

images of 

parasitized and 

uninfected red 

blood cells 

Thick blood 

smear images 

from Samsung 

Galaxy S20 

smartphone 

camera 

YOLOv5x, 

Faster R-

CNN, SSD, 

and 

RetinaNet 

object 

detection 

neural 

networks 

precision, 

recall, F-

score, and 

mAP 

Deep Malaria 

diagnosis 

(Hemacha

ndran et 

al., 2023) 

Forecast malaria 

impact on 

population over 

time  

Parasitized cell 

images/infected 

cell images from 

National Institutes 

of Health (NIH) 

 

CNN, 

MobileNetV

2, and 

ResNet50 

training and 

testing loss, 

precision, 

recall, Fi-

score, and 

ROC curve 

Deep Malaria 

control 

(Liu et al., 

2023) 

Rapid detection of 

malaria parasites. 

mSmartMalariaN

ET 

YOLOv5 

model, 

AAM and 

CNN 

Acc. 

Precision, 

Sensitivity, 

Specificity, 

F1-Score, 

Auc 

Deep Malaria 

diagnosis 

(Chakrade

o et al., 

2021) 

Model low cost 

malaria diagnosis 

with overall 

accuracy 

images of 

Giemsa-stained 

thin blood smear 

slides from 

Chittagong 

Medical College 

Hospital, 

Bangladesh 

VGG-based 

model 

accuracy, 

precision, 

recall, and 

F1-score, 

specificity 

Deep Malaria 

diagnosis 

(Tuba et 

al., 2020) 

Diagnosis malaria Parasitized cell 

images/infected 

cell images from 

National Institutes 

of Health (NIH) 

CNN Accuracy, 

precision, 

recall, and 

F1-score. 

Deep Malaria 

diagnosis 

(Onuche-

Ojo et al., 

2024) 

Web-based 

diagnostic tool 

Parasitized cell 

images/infected 

cell images from  

Kaggle repository 

CNN and 

TensorFlow 

model 

 Precision, 

recall, F1-

score 

Deep Malaria 

diagnosis 

 HMIS = Health Management Information System, NIH = National Institutes of Health, C5.0 = specific decision tree algorithm, ANN = Artificial 
Neural Network, k-NN = K-nearest Neighbor, LR = Linear Regression, AUC-ROC = Area Under Curve-Receivers operating Characteristics, 

GaussianNB = Gaussian Naive Bayes, RF = Random Forest, RMSE = Root mean Square Error, MAE = Mean Absolute Error, MSE = Mean Squared 

Error, OneR = One Rule, ZeroR = zero Rule, NN = Neural Network, GRNN = Generalized Regression Neural Network, GPR = Gaussian Process 
Regression, SVR = Support Vector Regression, RBNN = Radial Basis Neural Networks, PSO = Particle Swarm Optimization, MLP = Multilayer 

perceptron, GB = Gradient boosting, GP = Gaussian process, GNB = Gaussian naïve bayes, LDA = linear discriminant analysis, RFR = Random Forest 

Repressors, EXGBoost = Extreme Gradient Boost, GLM = Generalized Linear Model, PCC = Pearson Correlation Coefficient. 
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3. How do predictive systems provide precise and actionable evidence to support the eradication of the 

malaria burden? 

Advancement in computational resources (in terms of hardware, software, and availability of large volumes 

of data) has necessitated the development of computationally intensive data-driven solutions in predictive 

malaria models or systems. The implementations of these models are performed with regression, shallow, and 

deep machine learning (Khan et al., 2024; Ojurongbe et al., 2023; Singh et al., 2023). While regression models 

are formulated to provide a single-valued output which is used to obtain the estimates of malaria burden, 

shallow and deep learning models are built to predict malaria burden in terms of multiple values to support 

multi-class classification, making its predictions more precise. However, the output of the learning model 

differs based on the type of data in use. In recent times, precise evidence is in high demand to support informed 

decision-making and improve health outcomes and personalized care (Christopoulo, 2024). 

In malaria control, evidence(s) are generated as the output of classification/ prediction models/ systems of 

shallow machine learning using meteorological data (Taconet et al., 2021), a combination of meteorological 

and clinical/ incidence data (Akinbobola & Omotosho, 2013). Similarly, in malaria diagnosis, evidence is 

generated from the output of shallow or deep machine learning using clinical data (Lee et al., 2021; Yadav et 

al., 2021). Other research to eradicate the malaria burden in terms of detection of malaria parasites using 

shallow machine learning (Taye et al., 2024; Ahmad et al., 2023; Babikir & Thron, 2022; Gezahegn et al., 

2018), prediction of the outbreak (Komugabe et al., 2024; Mbunge et al., 2023), and risk of malaria (Sahu et 

al., 2023; Onyijen et al., 2023; Khoirunnisa & Ramadhan, 2023; Jimoh et al., 2022), and interpretation of the 

output of malaria prediction (Rajab et al., 2023; Afolabi et al., 2023; Mohapatra et al., 2020). Table 4 shows 

the summary of evidence(s) from predictive malaria models/or systems towards the eradication of the malaria 

burden. 

Tab. 4. Summary of existing studies on application of machine learning in eradication of malaria burden using predictive 

models 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Khan et 

al., 2024) 

Prediction 

model of 

malaria 

outbreaks  

Historical 

meteorological 

and clinical 

dataset from 

HMIS 

C5.0 DT, ANN, k-

NN,SVM with 

linear and radial 

kernels, LR, 

XGBoost, and RF 

Accuracy, 

sensitivity, 

specificity, 

AUC-ROC 

Shallow Malaria 

control 

(Sahu et 

al., 2023) 

Prediction 

model of 

malaria risk 

Demographic 

/clinical date 

from Patient 

records 

LR, DT classifiers, 

gaussianNB, RF, 

and extratree 

classifiers 

Precision, 

Recall, F1-

Score 

Shallow Malaria 

diagnosis 

(Onyijen et 

al., 2023) 

Prediction 

model of 

malaria risk 

Demographic 

/clinical date 

from Kaggle 

repository 

Supervised machine 

learning techniques 

RMSE, 

MAE, MSE, 

F1-score 

Shallow Malaria 

control 

(Rajab et 

al., 2023) 

Interpret 

malaria 

prediction 

- Shapley Additive 

Explanation 

(SHAP) and Local 

Interpretable 

Model-agnostic 

- Deep Malaria 

diagnosis 

(Ojurongb

e et al., 

2023) 

Predict 

malaria 

positivity 

Patient data 

from Osogbo, 

Osun State, 

Southwest 

Nigeria 

Penalized 

Regression Model, 

DT 

Accuracy, 

precision(ne

gative, 

positive), 

recall 

(negative, 

positive), 

F1-score 

(forged, real) 

Shallow Malaria 

diagnosis 
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Tab. 4. Summary of existing studies on application of machine learning in eradication of malaria burden using predictive 

models, continuation 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Ahmad et 

al., 2023) 

To classify 

data for 

accurate 

Malaria 

diagnosis and 

decision-

making. 

Demographic 

/clinical data 

from Patient 

records of 

Federal 

Medical 

Centre in 

Yola, 

Adamawa 

state. 

Naïve Bayes, (J48) 

DT, ZeroR, and the 

OneR algorithm 

and ensemble 

model 

Accuracy Shallow Malaria 

diagnosis 

(Khoirunni

sa & 

Ramadhan, 

2023) 

Detection of 

malaria 

Secondary 

data from 

Federal 

Polytechnic 

Ilaro Medical 

centre, Ilaro 

Ogun state, 

Nigeria. 

Bagging (Bootstrap 

Aggregating), DT 

 

Accuracy Shallow Malaria 

diagnosis 

(Jimoh et 

al., 2022) 

Predict 

multiclass 

malaria 

infection 

Hospital data 

and health 

services unit 

Stacking Ensemble 

learning 

Sensitivity, 

specificity, 

PPV, and 

NPV, error 

rate, last 

correct rate, 

last error 

rate, 

classified 

rate 

Shallow Malaria 

diagnosis 

(Mariki et 

al., 2022) 

Prediction 

model of 

malaria 

Clinical data 

in Tanzania 

supervised machine 

learning models 

Accuracy Shallow Malaria 

diagnosis 

(Singh et 

al., 2023) 

Prediction of 

malaria 

outbreak 

Meteorologica

l data 

Feed-forward NN, 

PSO,  

GRNN, GPR, SVR, 

RF, and 

RBNN 

MSE, 

coefficient 

correlation, 

accuracy 

Shallow Malaria 

control 

(Martineau 

et al., 

2022) 

Prediction of 

malaria 

outbreak 

Climatic data MLP, GB, 

Adaboost, 

XGboost, RF, 

SVM, K-nearest, 

GP, GNB, logistic 

regression, LDA, 

multi-model 

persistence 

Accuracy Shallow Malaria 

control 

(Harvey et 

al., 2021) 

Predict early 

risk of malaria 

Integrated e-

Diagnostic 

GP and RFR Precision 

and recall 

Shallow Malaria 

control 

(Stephen et 

al., 2021) 

Predict 

malaria 

outbreak 

Meteorologica

l and malaria 

incidence data 

Naive Bayes, SVM, 

Linear Regression, 

Logistic 

Regression, and 

kNN 

Accuracy Shallow Malaria 

control 

(Mohapatr

a et al., 

2020) 

Predict 

malaria 

outbreak 

Malaria 

incident data 

MLP, J48 

classifiers 

RMSE, 

better kappa, 

accuracy 

Shallow Malaria 

control 
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Tab. 4. Summary of existing studies on application of machine learning in eradication of malaria burden using predictive 

models, continuation 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Nkiruka 

et al., 

2020) 

Classify malaria 

incidences 

Clinical 

/climatic 

data from 

National 

Centre for 

Atmospheric 

Research 

(NCAR) 

XGBoost, Naïve 

Bayes, SVM, 

Logistic 

Regression 

Accuracy, 

AUC and 

ROC 

Shallow Malaria 

control 

(Brown et 

al., 2020) 

Short term 

prediction of 

malaria 

prevalence 

Clinical data 

from the 

pediatrics 

dept. and 

primary 

health care 

centres 

university of 

Ibadan 

GLM, ensemble 

method, SVM 

MAE, MSE, 

PCC  

Shallow Malaria 

control 

HMIS = Health Management Information System, NIH = National Institutes of Health, C5.0 = specific decision tree algorithm, ANN = Artificial 

Neural Network, k-NN = K-nearest Neighbor, LR = Linear Regression, AUC-ROC = Area Under Curve-Receivers operating Characteristics, 

GaussianNB = Gaussian Naive Bayes, RF = Random Forest, RMSE = Root mean Square Error, MAE = Mean Absolute Error, MSE = Mean Squared 
Error, OneR = One Rule, ZeroR = zero Rule, NN = Neural Network, GRNN = Generalized Regression Neural Network, GPR = Gaussian Process 

Regression, SVR = Support Vector Regression, RBNN = Radial Basis Neural Networks, PSO = Particle Swarm Optimization, MLP = Multilayer 

perceptron, GB = Gradient boosting, GP = Gaussian process, GNB = Gaussian naïve bayes, LDA = linear discriminant analysis, RFR = Random Forest 
Repressors, EXGBoost = Extreme Gradient Boost, GLM = Generalized Linear Model, PCC = Pearson Correlation Coefficient. 

3. DISCUSSION 

3.1. Gaps identified in the studies 

Despite the advancement in machine learning approaches/algorithms and open access platforms to 

implement the shallow and deep learning algorithms to improve the accuracy of data-driven systems, its 

application towards the eradication of malaria burden is still underutilized in addressing malaria control, 

diagnosis, and drug development. Therefore, this section focuses on the research gaps that need to be addressed 

to enhance the effectiveness and applicability of these soft computing tools/ algorithms in the necessary in the 

eradication of malaria burden in terms of control and diagnosis. This challenge is further exacerbated by the 

following points, namely. 

3.2. Non-availability of quality data  

Several malaria-endemic regions lack comprehensive and high-quality data to develop machine learning 

models resulting in sparsity of data. Therefore ensuring effective methods of data collection, preprocessing, 

and standardization is necessary to ensure availability, consistency, and balanced data. Also, the performance 

of the machine learning model relies on structured data to generate reliable evidence from the raw data 

collected with various devices across the malaria endemic regions to improve the output machine learning 

models. In the generation of evidence to support malaria control, data to estimate the malaria burden with 

statistical modeling using direct and indirect costs (Affiah et al., 2022; Ayogu et al., 2021; Tefera et al., 2020) 

is sought from survey data conducted by public health workers. However, a section of the data from the 

repository covering socioeconomic factors is filtered for model design and implementation due to the 

inadequacy of its model to cope with high dimensional features. In Affiah et al. (2022) and Tefera et al. (2020), 

statistical modeling was performed using direct and indirect cost features, without the consideration of 

geospatial, and socio-demographic features in the data.  

Apart from the existing studies on statistical modeling using survey data, meteorological/ climatic data 

using shallow machine learning (Taconet et al., 2021) or deep learning (Hoyos & Hoyos, 2024), meteorological 

data (Khan et al., 2024), and a combination of both meteorological and clinical data (Sahu et al., 2023) and 

incidence data (Mokuolu et al., 2023) are used with machine learning algorithms to implement data-driven 
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models for malaria control (Nkiruka et al., 2021). In the eradication of burden through informed diagnosis, 

clinical data have been exploited by researchers to train machine learning algorithms using images of leucocyte 

samples to detect parasites (Hoyos & Hoyos, 2024; Qadri et al., 2023; Shi et al., 2020; Maturana et al., 2023). 

Apart from inconsistencies associated with data obtained from different collection tools, the unstructured and 

unbalanced nature of the data can degrade the performance of the learning model. Therefore to implement a 

machine learning model devoid of bias, adequate data preprocessing and standardization processes should be 

ensured adopted by the research community.  

Also, a holistic approach for adequate integration of data via real-time data fusion from multiple sources 

can ensure uniformity of format from different data collection subsystems (e.g., climate, socio-economic, 

health system) to improve predictive models and strategic interventions. 

3.3. Inadequate transparency of machine learning models 

From the tables of literature (Tables 1, 3-6) summarizing the estimation of malaria burden, malaria 

diagnosis, and predictive systems in malaria control and diagnosis, it is evident that statistical modeling and 

shallow and deep learning algorithms are mainly used in the reviewed articles. The shallow learning algorithms 

among others include; Naïve Bayes, Random Forest (Barraclough et al., 2024; Ahmad et al., 2023), stacking 

ensemble and neural network (Shi et al., 2020; Jimoh et al., 2022), C5.0 Decision tree, Artificial neural 

network, K-nearest neighbor, Support Vector Machine, bagging (Khan et al., 2020; Khoirunnisa & Ramadhan, 

2023). Similarly, deep learning algorithms are GRU, LSTM, BiLSTM (Dev et al., 2024), and CNN (Kumar et 

al., 2023). Yolov8, Yolov 5, masked R-CNN, ResNet5.0 (Maturana et al., 2023; Loh et al., 2021; Liu et al., 

2023; Hoyos & Hoyos, 2024). However, recent AI algorithms are underutilized to enhance transparency in 

model procedures as well as malaria control and diagnosis.  

For instance, the use of eXplainable and generative AI could present a white-box approach to the current 

black-box approach in model implementation and the interpretation of output to provide precise evidence for 

accurate malaria control, diagnosis, and drug development. eXplainable AI (Chaddad et al., 2023), though 

intended to provide transparent machine learning procedures for accurate interpretation of the learning process 

is under-utilized in the eradication of malaria burden in terms of control and diagnosis. The transparency of 

the machine learning models could be defined such that it takes into account the local knowledge and practices 

of specific regions by aligning with the specific contexts of the region. Out of the final full-length 61 articles 

reviewed, only one article adopted Shapley Additive Explanation (SHAP) and Local Interpretable Model-

agnostic and Large Language models (Attai et al., 2022; Rajab et al., 2023; Taconet et al., 2021). The focus of 

the adopted models towards the eradication of malaria burden is tailored towards the enhancement of the 

interpretability of the deep learning model of prediction of malaria diagnosis. 

However, there was no concept of transparency defined that is tailored towards providing evidence to 

eradicate the malaria burden in terms of prevention and control. 

Tab. 5. Summary of existing studies on application of machine learning in eradication of malaria burden using detection models 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Genetu et 

al., 2023) 

Detection of malaria 

parasites using web-

based blood smear 

images 

Malaria Cell 

Images from 

patients 

DCN and TL with 

VGG19, Xception 

and InceptionV3 

models 

Accuracy Deep Malaria 

diagnosis 

(Khoirunn

isa & 

Ramadha

n, 2023) 

Detection of malaria Patient data, 

Indonesia 

Bagging 

(Bootstrap 

Aggregating), DT 

Accuracy Shallow Malaria 

diagnosis 

(Rismaya

nti, 2024) 

Detection of malaria 

using blood smear 

images 

NIH DT Accuracy, 

Precision, 

Recall, F-

Measure 

Shallow Malaria 

diagnosis 

(Aravinda 

et al., 

2023) 

To enhance 

robustness and 

generalization of 

machine learning 

model 

Infected and 

uninfected 

samples 

XGBoost, SVM, 

and NN classifier 

Accuracy, 

F1-score, 

precision, 

recall 

Dhallow Malaria 

diagnosis 
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Tab. 5. Summary of existing studies on application of machine learning in eradication of malaria burden using detection 

models, continuation 

Ref Objective Data source Algorithm Parameter Approach Significan

ce 

(Vallinay

agam et 

al., 2021) 

Identification 

of infected 

falciparum 

malaria parasite 

Image data TL approach 

VGGN and Support 

Vector Machine 

(VGG-SVM). 

Accuracy, F1-

score, precision, 

recall, AUC 

Deep Malaria 

diagnosis 

(Comert 

et al., 

2020) 

Detect malaria 

outbreak 

Malaria data 

samples 

RDT, logistic 

regression, and GP 

Accuracy Shallow Malaria 

control 

(Mwanga 

et al., 

2019) 

Detect malaria 

from rapid 

blood spots. 

Blood samples 

collected 

taken from 

finger pricks  

Logistic regression, 

kNN, SVM, NB, 

XGBoost, MLP, RF 

sensitivity, 

specificity, 

positive 

predicted value, 

negative 

predicted value, 

PRC 

Shallow Malaria 

diagnosis 

(Dev et 

al., 2024) 

Detect malaria ListerHill 

National 

Center for 

Biomedical 

Communicatio

ns 

GRU, LSTM, and 

BiLSTM and 

candidate RNN 

classifiers. 

Accuracy, 

precision, recall, 

F1-score 

Deep Malaria 

diagnosis 

(Bhuiyan 

& Islam, 

2023) 

Detect malaria 

using red blood 

cells 

Microscopic 

red blood cell 

images from 

the NIH 

repository 

VGG16(Retrained), 

VGG19(Retrained), 

and 

DenseNet201(Retra

ined), custom CNN. 

Transfer Learning, 

CNN machine 

Accuracy, 

precision , recall 

Deep Malaria 

diagnosis 

(Kumar et 

al., 2023) 

Detect malaria Uninfected 

and infected 

images from 

NIH 

CNN Accuracy, 

precision , recall 

Deep Malaria 

diagnosis 

(Loh et 

al., 2021) 

Early diagnosis 

of malaria 

Uninfected 

and infected 

red blood cells 

Mask RCNN 

model, Custom, 

TL-VGG16, 

ResNet-50, 

CNNEx-SVM, R-

CNN  

Accuracy Deep Malaria 

diagnosis 

(Babikir 

& Thron, 

2022) 

Detection of 

malaria 

Samples of 

thin blood 

smears 

Transfer learning * Deep Malaria 

diagnosis 

(Khalighif

ar et al., 

2021) 

Multiclass 

mosquito 

specie 

identification 

system 

Spectrogram 

images 

deep-learning 

algorithms 

(TensorFlow 

Inception v3) 

* Deep Malaria 

control 

(Sriporn 

et al., 

2020) 

Detect malaria 

using thin 

blood smear 

images  

Image data of 

thin blood 

smear 

CNN Accuracy, 

precision, recall 

and F1 measure  

Deep Malaria 

diagnosis 

(Yang et 

al., 2020) 

Detect 

Plasmodium 

vivax parasites 

in thin blood 

smears 

Thin blood 

smear image 

from patients 

Cascading YOLO 

model and AlexNet 

classifier 

Accuracy, AUC, 

sensitivity, 

specificity, 

precision 

negative 

predictive value 

Deep  Malaria 

diagnosis 
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Tab. 5. Summary of existing studies on application of machine learning in eradication of malaria burden using detection 

models, continuation 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Pattanaik 

et al., 

2022) 

Detect malaria with 

mobile microscopy 

Phone 

images of 

microscopic 

blood smear  

DCNN (i.e. 

Multi- 

MMResNet and 

baseline 

architectures 

(Faster RCNN, 

CNN, LeNet5, 

AlexNet, 

GoogleNet, SVM) 

Accuracy Deep Malaria 

diagnosis 

(Feng et 

al., 2020) 

Detect malaria 

parasites in thick 

blood smear images 

Thick smear 

images from 

patients 

Intensity-based 

IGMS, CNN. 

Accuracy, 

AUC, 

sensitivity, 

specificity, 

precision 

negative  

Deep Malaria 

diagnosis 

(Rajarama

n et al., 

2019) 

Detect parasitized 

cells in thin-blood 

smear images 

Giemsa-

stained thin-

blood smear 

slidesfrom 

patients 

Custom and 

pretrained CNNs, 

Custom CNN, 

Squeezenet, 

inceotionResNet-

V2, All-ensemble 

accuracy, 

AUC-

ROC, 

MSE, 

Precision, 

F-score, 

MCC 

Deep Malaria 

diagnosis 

DCN = Deep Convolutional Network, TL = Transfer Learning, VGGN = Visual Geometry Group network, RDT = Random Decision Tree, GRU = 
Gated Recurrent Unit, LSTM = Long Short-Term Memory, BiLSTM = Bi-directional LSTM, DCNN = Deep Convolutional Neural Networks, 

MMResNet = Magnification Deep Residual Network, IGMS = Iterative Global Minimum Screening, MCC = Matthews Correlation Coefficient. 

Tab. 6. Summary of existing studies on application of machine learning in eradication of malaria burden using classification 

models 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Muhamm

ad et al., 

2024) 

Classification and 

segmentation of 

malaria cell 

Microscopic 

images of 

blood cells 

DenseNet and 

EfficientNet 

models, coupled 

with a ReLU 

activation 

function 

Precision, 

Recall, F1-

score 

Deep Malaria 

diagnosis 

(Rosnelly 

et al., 

2023) 

Classify the type 

and stage of 

development of 

malaria parasite  

* SVM and CNN Accuracy Deep Malaria 

diagnosis 

(Rashke & 

Shahzad, 

2023) 

Classifying 

malaria-infected 

erythrocytes 

(RBCs) 

Malaria NIH Unified SGD, 

logistic 

regression, and 

DT, Xgboost, RF, 

Multinomial 

Accuracy, 

recall 

precision 

Shallow Malaria 

diagnosis 

(Iftikhar et 

al., 2024) 

Classification of 

malaria blood 

smears from red 

blood cells 

Kaggle CNN ResNet101, 

SqueezeNet, LDA 

Accuracy 

(%), 

Precision 

(%), 

Specificity 

(%), 

Sensitivity 

(%), F1-

Score 

Deep Malaria 

diagnosis 
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Tab. 6. Summary of existing studies on application of machine learning in eradication of malaria burden using classification 

models, continuation 

Ref Objective Data source Algorithm Parameter Approach Significance 

(Amin et 

al., 2023) 

Classification of 

healthy and 

Plasmodium 

falciparum-

infected cells 

Blood smear 

images from 

Chittagong 

Medical College 

Hospital in 

Bangladesh 

Semi-

supervised 

GAN and TL 

Precision, 

accuracy, 

sensitivity, 

F1 score, 

specificity 

and AUC-

ROC  

Deep Malaria 

diagnosis 

(Atoyebi 

et al., 

2023) 

Classification of 

malaria incidence 

Clinical records 

of public general 

hospital in 

Federal Capital 

Territory, Abuja. 

MultinomialN

B and RF 

Precision, 

recall, F1-

score, 

accuracy 

Shallow Malaria 

diagnosis 

(Di̇ker, 

2022) 

Malaria cell image 

classification 

Malaria cell 

image 

Residual 

CNN, k-NN, 

and SVM and 

NCA 

Acc, Se, Spe, 

and F-score 

Deep Malaria 

diagnosis 

(Morang’a 

et al., 

2020) 

Multiclass 

classification of 

clinical malaria 

outcomes based 

on haematological 

parameters 

Navrongo Health 

Research Centre 

(NHRC), 

Northern Ghana. 

ANN Accuracy, 

Kappa, ROC-

AUC, 

Precision, 

Recall, F1-

Score 

Shallow Malaria 

diagnosis 

(Quan et 

al., 2020) 

Classification of 

Red Blood Cells 

in Malaria 

Diseases 

Red Blood Cells 

(RBC) dataset by 

USA NIH 

ADCN Accuracy, 

sensitivity 

and 

specificity, 

F1-score 

Deep Malaria 

diagnosis 

SGD = Stochastic Gradient Descent, GAN = Generative Adversarial Network, NB = Naïve Bayes, NCA = Neighborhood Components Analysis, ACC 

= Accuracy, Se = Sensitivity, Spe = Specificity, ADCN = Attentive Dense Circular Net. 

3.4. Inadequate evaluation parameters to measure the real-world impact of machine learning on malaria 

control and diagnosis 

Performance parameters could provide baseline measures to ascertain the effectiveness of models in real-

life applications are yet to be fully developed by researchers. However, the study of Brown et al. (2020) 

provided an error tolerance range of (+0.1 to -0.05) as an acceptable scale for clinically relevant decision 

support in holoendemic settings. Other machine learning approaches adopted model evaluation parameters 

such as: accuracy, precision, recall, specificity, F1-score and more. The summary of the evaluation parameters 

and their corresponding values derived from malaria control and diagnosis research utilizing both shallow and 

deep learning models is compiled in Tables 7 and 8. 

Tab. 7. Deep learning performance evaluation parameters and values 

Ref. Data 

size 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
Precision Recall F1-score 

(Onuche-Ojo et al., 2024) 27,558 97.17 - - 0.97 0.97 0.97 

(Dev et al., 2024) 27,558 96.2 - -    

(Iftikhar et al., 2024) 27,558 99.73 - - - - - 

(Bhuiyan & Islam, 2023) 27,558  97.92 - - 0.98 0.98 0.98 

(Hoyos & Hoyos, 2024) 333 95 94 93 - - - 

(Hemachandran et al., 

2023) 27,558 97.06 - - 0.97 0.97 0.97 

(Khalighifar et al., 2021) 1,400 94.50 - - - - - 

(Feng et al., 2020) 1819 97.26 78.98 80.81 0.83 0.98  

(Quan et al., 2020) 257558 97.47 97.78 97.07 - - - 
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Tab.8. Shallow machine learning performance evaluation parameters and values 

Ref Data 

size 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
Precision Recall F1-score 

(Khan et al., 2024) 4428 99.8 100 98.3 - - - 

(Onyijen et al., 2023) 856 98.3 - - - - - 

(Khoirunnisa & 

Ramadhan, 2023) 337 82 56.93 - - - - 

(Jimoh et al., 2022) 1,200 85.6 84.06 86.09 - - - 

(Mariki et al., 2022) 2556 79 82 69 0.71 0.76 - 

(Shi et al., 2020) 217 94.58 93.82 94.95 - - - 

(Mwanga et al., 2019) 296 - 91.7 92.8 - - - 

 
Based on Tables 7 and 8, studies by Bhuiyan & Islam (2023), Onuche-Ojo et al. (2024), Iftikhar et al. 

(2024), and Quan et al. (2020) indicate a significant trend in malaria control and diagnosis, suggesting that 

larger sizes of data enhance the performance accuracy of both shallow machine learning and deep learning 

models. For instance the maximum and the minimum sizes of data utilized for malaria control and diagnosis 

using deep learning is 27,558 and 337, respectively. Conversely, smaller datasets tend to correlate with lower 

performance accuracy in deep learning applications For instance, a comparison of the size of data in the study 

of Hoyos & Hoyos (2024) and Khalighifar et al. (2021) with the data size of 333 samples recorded 95% 

accuracy, whereas similar study by Iftikhar et al. (2024) with the data size of 27,558 samples recorded 97% 

accuracy in deep learning. 

Also, it has been observed that the data sizes utilized in shallow machine learning are generally smaller 

than those required for deep learning tasks. For instance, the maximum and minimum data sizes for malaria 

diagnosis using shallow learning have been recorded at 4428 (Khan et al., 2024) and 217 (Shi et al., 2020) 

samples, respectively, which may be inadequate for effective deep learning modeling. This analysis indicates 

that the application of deep learning compared to shallow learning is contingent upon the dimensionality of 

the data as well as the availability of advanced computational resources for the generation of precise evidence 

towards eradication of malaria burden in terms of control and diagnosis. 

3.5. Limitations of the study 

This review focuses on research articles published between 2018 and 2024, utilizing databases indexed by 

Google Scholar, PubMed, and Science Direct. It is important to recognize that articles published beyond this 

specified period, as well as those from conferences not indexed by Springer, ACM, or IEEE, are excluded from 

the analysis. Additionally, findings from journals and proceedings not written in English were also excluded 

from consideration. Consequently, there is a potential for relevant articles to be overlooked due to the 

limitations of the search queries used for document retrieval. To enhance the robustness of future reviews, it 

would be beneficial to expand the scope to include other databases and indexes and consider studies in 

additional languages. Addressing these factors may mitigate bias and provide a more comprehensive 

understanding of the research landscape. 

3.6. Future work 

Future research initiatives should prioritize the adoption of standardized methodologies to investigate both 

shallow and deep machine learning techniques. Additionally, incorporating data from publications written in 

languages other than English could significantly reduce potential biases identified in this review, thereby 

enriching the overall analysis. It is imperative to examine the barriers to the application of machine learning 

in malaria control and diagnosis, including issues related to data quality, insufficient infrastructure, and a 

shortage of expertise in resource-limited settings. Conducting thorough meta-analyses to assess the 

effectiveness of machine learning (ML) and deep learning (DL) algorithms in malaria diagnosis and control 

will provide valuable insights for the field. Furthermore, exploring the integration of machine learning 

techniques with advanced technologies, such as Internet of Things (IoT) devices and geographic information 

systems (GIS), holds great promise for enhancing real-time data collection and surveillance. Pursuing these 

avenues for future research could substantially advance capabilities in malaria control and contribute to 

improved health outcomes. 
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4. CONCLUSION 

Improving the quality of evidence through the application of machine learning can engender support for 

malaria control and diagnosis through real-time informed decision-making and policy formulation. From 

statistical modeling to shallow and deep learning algorithms in the eradication of malaria burden on 

households, the application of varying data analytics approaches is targeted towards the refinement of 

evidence. The evidence from machine learning is measured in terms of reduced error rates with parameters 

such as RMSE, MAE, MAPE, correlation coefficients, and more). In this review, a scoping review of literature 

has revealed the dearth of literature on the application of machine learning in malaria control measures (e.g. 

estimation of cost of malaria burden and surveillance), despite the availability of data from malaria indicator 

and demographic health surveys. This lapse has contributed to the increased malaria burden among households, 

despite interventions by government and donor agencies especially in sub-Saharan Africa.  

However, studies using machine learning in malaria diagnosis are widely researched between 2018-2024, 

inclusively but mostly at experimental stages without model deployment to provide real-time information 

required for the speedy attainment of SDG targets towards sustainable good health and well-being. Also, the 

need for collaboration among Computer Science, public health enumerators, and medical specialists which is 

currently lacking in the existing studies should be explored in further development of predictive systems for 

malaria control and diagnosis using machine learning. These research gaps can serve as an open problem for 

researchers to explore taking into cognizance the limitations associated with machine learning algorithms/ 

models and predictive systems. 
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