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Integrating path planning and task scheduling  

in autonomous drone operations 

Abstract 

The efficiency and adaptability of drone operations depend heavily on two critical components: path 

planning and task scheduling. While the literature provides extensive research on these algorithms 

independently, there is a severe lack of studies addressing their combined impact on drone performance. 

Hence, this study aims to bridge this gap by developing a comprehensive framework that integrates three 

path planning algorithms (Spiral, Boustrophedon, and Hybrid) with four task scheduling algorithms (First-

Come First-Served (FCFS), Shortest Processing First (SPF), Earliest Deadline First (EDF), and Priority). 

The hybrid path planning algorithm is proposed for this work. The framework evaluates each combination's 

performance based on key metrics, including elapsed time and energy consumption. A virtual simulation 

environment is designed and implemented for the sake of this study. The results show that combining the 

SPF scheduling algorithm with Hybrid path planning offers the best balance between time efficiency and 

energy consumption. The Boustrophedon path planning method shows the highest elapsed times and is 

generally less efficient than Hybrid and Spiral. 

1. INTRODUCTION 

1.1. Research overview 

The use of drones has expanded significantly beyond recreational activities. These activities have 

permeated industries such as logistics, agriculture, surveillance, and disaster response (Hassanalian & 

Abdelkefi, 2017). As drones are integrated into these critical operations, the efficiency and sustainability of 

their performance become paramount. Path planning and task scheduling algorithms are key factors in drone 

performance. These factors play a significant role in the consumption of resources, which are limited to drones 

(Wang et al., 2023). 

On the one hand, path planning is considered a critical aspect of drone operations. It ensures that drones fly 

efficiently and safely from source to target. One of the main goals of path planning algorithms is to optimize 

flight paths and ultimately minimize energy consumption, avoid obstacles, and meet mission-specific 

constraints (e.g., time or coverage requirements) (Aggarwal & Neeraj, 2020). Path planning algorithms, such 

as Boustrophedon and Spiral, attempt to guide drones to navigate and survey areas of interest with minimum 

cost (e.g., time and energy). On the other hand, task scheduling in drones involves assigning specific tasks 

within certain time constraints. The assignment process should take into account the limitations of the drones' 

resources, such as battery life, payload capacity, and computing power. The primary purpose of task scheduling 

is to improve the operational efficiency of drones, reduce mission completion times, and conserve energy. This 

is important in scenarios where drones operate autonomously in dynamic environments (Pasha et al., 2022). 

Scheduling algorithms have different strategies for prioritizing tasks. Variables such as task complexity, 

urgency, and drone capacity affect their performance. 

The metrics used to evaluate the appropriateness of a path planning algorithm vary depending on the 

application. Metrics such as path length, time, energy consumption, memory consumption, coverage, and 

safety can be considered (Reda et al., 2024). In addition, the main challenges that drone path planning can 

struggle with (Chiang et al., 2020; Liu et al., 2024): 

− Energy constraints: The limited resources of the drones make it necessary for the drones to navigate 

with efficient routes. 
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−  Dynamic environment: Changes in the environment during operation cause the drone to continuously 

change its paths.  

−  Computational efficiency: During missions, drones must make decisions in real time, requiring efficient 

and accurate computation. 

Furthermore, the role of task scheduling algorithms is to manage drone resources and efficiently adapt to 

dynamic environments. Thus, task scheduling algorithms face several challenges such as (Mao et al., 2024; 

Yang et al., 2025): 

−  Dynamic Task Arrival: This problem consumes the drone's energy because as tasks are added during 

missions, real-time rescheduling is required to reprioritize them. 

− Dynamic environment: Any change in the environment should be taken into account during missions, 

with the goal of not missing any deadline for tasks, which is challenging. 

−  Resource constraints: Limited drone resources complicate the challenge, especially given the dynamic 

nature of drone missions during operations. 

Both path planning and task scheduling in drones face several interrelated challenges that significantly 

impact their efficiency. These challenges require the development of robust, adaptive approaches and 

frameworks that can simultaneously address the requirements of efficient navigation and task execution. 

1.2. Literature review 

The literature on drone path planning and task scheduling highlights significant advances in improving the 

efficiency of drone operations. In path planning, early studies focused on deterministic methods such as 

Dijkstra's and A* (Mantoro et al., 2021). These two algorithms guarantee optimal paths in static environments. 

They were later extended by probabilistic methods such as Probabilistic RoadMap (PRM) and Random-

exploring Random trees (RRT) to handle complex and high-dimensional spaces (Hüppi et al., 2022). In 

addition, other later work has developed hybrid approaches that combine different methods to ensure efficiency 

and real-time adaptability in dynamic environments. In addition, task scheduling has evolved from simple 

algorithms such as First-Come First-Served (FCFS) and Shortest Process First (SPF) to more advanced 

methods such as Earliest Deadline First (EDF) and Priority Scheduling. Other studies in the literature have 

explored the integration of path planning and task scheduling to address a variety of challenges (energy and 

real-time decision making). A study by Sung et al. (2019) presented a novel scheduling system for drone 

operations. They attempted to address the complexity and uncertainty inherent in drone operations and 

missions. The study introduced a flexible scheduling framework built with modular algorithms and used a 

simulation-based approach to evaluate scheduling solutions in dynamic environments. The key aspect of their 

research was the development of a prototype that demonstrated the feasibility and effectiveness of the proposed 

system. The study made several significant contributions to the field, such as the proposed conceptual design 

of the scheduling system and the identification of fundamental scheduling challenges in drone operations. 

Using a simulation-based method, their work provided a realistic assessment of scheduling performance under 

varying operational conditions (e.g., weather and obstacles). Duan et al. (2020) proposed a dynamic fault-

tolerant task scheduling model (DSM-FNA) within a flexible network architecture (FNA) specifically designed 

for drone clusters. Their proposed architecture addresses the limitations of traditional drone networks by 

improving adaptability, flexibility, and resilience in dynamic environments. Their model used the Flexible 

Dynamic Scheduling Algorithm (FDSA) to optimize scheduling by dynamically adjusting drone capabilities 

and task requirements. The results showed that FDSA outperformed classical algorithms such as the Max-Min 

algorithm, especially during emergencies, by reducing task completion time and system communication load. 

The results also proved that DSM-FNA improved system flexibility and adaptability, while FDSA improved 

scheduling efficiency in real-time operation. 

Other studies used different approaches to task scheduling, such as the study by Qin et al. (2021). The study 

addressed the challenge of task selection and scheduling in drone-enabled multiaccess edge computing (MEC). 

It attempted to solve this problem by formulating the ASSUMER problem, which is "a mixed-integer nonlinear 

programming (MINLP) problem that includes both integer and continuous variables and has been shown to be 

NP-hard", Qin et al. (2021). They proposed a Reconnaissance Task Scheduling Algorithm (RTSA) that 

transformed the problem into a binary integer programming problem. This allowed for more efficient and 

practical solutions. The RTSA algorithm was proved to be polynomial-time optimal and is supported by a 

bicriterion approximation guarantee of (1-e(-1))/2. Extensive simulations showed that their proposed algorithm 

significantly improves the overall reconnaissance utility and energy efficiency compared to other algorithms 



 

3 

in the literature. The work of Khosiawan et al. (2019) developed a drone scheduling system for indoor 

environments. The system aimed to address a significant gap in current drone research. It categorized tasks 

into single and compound inspections and material handling tasks such as pickup, transport, and release. Their 

proposed method incorporated a heuristic-based approach using Particle Swarm Optimization (PSO) to 

efficiently generate high-quality schedules, which is critical for real-time drone operations. The results showed 

that the system was stable over different task datasets. Furthermore, You et al. (2022) explored the optimization 

of task scheduling and resource allocation in drone-enabled MEC systems. Their research introduced an 

iterative algorithm that minimized energy consumption and task completion time by decoupling and solving 

subproblems using block coordinate descent methods. The problem was mathematically formulated as a 

mixed-integer non-convex optimization focused on the joint management of drone trajectory, task scheduling, 

and resource allocation in Flying Ad-Hoc Networks (FANETs). The results showed a significant reduction in 

energy consumption, up to 71.9%, compared to other approaches in the literature. Another work proposed by 

Niu et al. (2022) focused on optimizing energy consumption and maintaining queue stability in drone networks. 

The study attempted to address the challenge of long-term task queue stability. It aimed to ensure that sudden 

task surges do not overwhelm drone operations. A two-step approach was proposed to minimize energy 

consumption by controlling the distribution of computational tasks between drones and mobile nodes. The 

researchers decoupled queue stability and energy consumption using Lyapunov optimization techniques. This 

technique allowed the researchers to find a tradeoff between system performance and energy efficiency. 

Simulations validated the effectiveness of these algorithms. It showed a significant level of energy savings of 

over 50% compared to traditional methods. As for the drone path planning literature, Du et al. (2022) 

developed an approach for drone coverage path planning. The approach was based on tight-envelope 

algorithms to obtain the optimal coverage area. The Jarvis method was used to keep the target, and then the 

invalid search area was removed to limit the total search area. A concave-convexity adaptive algorithm was 

also used to generate a drone search path. The results showed that their proposed approach efficiently reduced 

the invalid search area and minimized the turn frequency through boundary smoothing. Liu H. et al. (2024) 

proposed an approach to balance the social value of drones from one side and the power consumption and 

efficiency from the other side. The study included population distribution density and wind speed to create a 

well-established mathematical model for drones. The model reduced noise, threat to the public, and energy 

consumption in the trajectories of the drones. The study managed many issues simultaneously during drone 

operations. Therefore, it was considered multi-objective. Finally, Zhang et al. (2021) proposed a collision-free 

path planning approach for drones based on 3D voxel jump point search (JPS), which could work in complex 

urban areas. The approach also used Markov Decision Process (MDP) to dynamically avoid obstacles in real 

time. The results showed the efficiency of their approach compared to other approaches in the literature. 

1.3. Problem statement and contribution 

According to the literature, drones must navigate efficiently (path planning) while executing tasks in an 

effective sequence (task scheduling) to achieve optimal performance. As described in the previous section, the 

literature has studied these two aspects independently and has provided numerous algorithms for path planning 

and task scheduling. However, a critical gap remains in the study of their integration. This integration is crucial 

to answer the question: How do certain task scheduling algorithms perform when paired with certain path 

planning methods, and vice versa? Answering this question requires a comprehensive framework that provides 

developers with clear guidance on the optimal combinations of algorithms to maximize efficiency, minimize 

energy consumption, and meet operational constraints. Filling this gap is essential for improving the overall 

performance of drone systems. Therefore, the contribution and novelty of this work is to introduce a framework 

that integrates three drone path planning algorithms, Spiral, Boustrophedon, and Hybrid, with four task 

scheduling algorithms (FCFS, SPF, EDF, and Priority). Hybrid path planning is proposed in this thesis. It is a 

combination of Boustrophedon and Spiral algorithms. In addition, the combinations of path planning 

algorithms and task scheduling algorithms are efficiently evaluated using metrics such as energy and time 

consumption. This work provides practical recommendations for selecting algorithm pairs based on specific 

mission requirements, such as time-critical operations or energy conservation. It should be noted that this type 

of work (combining path planning and scheduling algorithms) is considered a severe lack in the literature. 

Also, the inclusion of concepts inspired by complex networks makes this work innovative compared to the 

literature. 



 

4 

The remaining sections are as follows: Section 2 presents the research methodology, including a description 

of the environment and simulation design, path planning algorithms, task scheduling algorithms, and 

evaluation metrics. Section 3 presents the experimental results along with the discussion. Finally, this work is 

concluded and the future directions are presented in Section 4. 

2. RESEARCH METHOD 

2.1. Simulation environment and representation 

This section describes the design of the simulation environment and how it is transformed into a network 

model. The environment is designed to be a square of 1000000m2, divided into four square sub-areas, each of 

250000m2. In addition, each of these subareas contains 25 cells of 10000m2. The division of the environment 

into four sub-areas is based on the scenarios considered in this work. Each cell is a node, while the possible 

paths to the surrounding cells represent the edges. Collecting these nodes and edges results in a network model 

that contains 100 nodes (cells). Figure 1 shows the environment in the form of a (10x10) grid, and Figure 2 

shows the network model of the simulation environment. It should be mentioned that the edges of the network 

model represent the trajectories that drones can navigate from one cell to another. Furthermore, network 

measures such as diameter, shortest path, and closeness centrality are computed. The path planning method 

used in this thesis is offline. Therefore, the computations aim to provide the drones with a complete view of 

the simulation environment during operation. The measurements used in the path planning algorithms of this 

work can be described as follows (Albert & Barabasi, 2002; Alfathe et al., 2025; Mahmood et al., 2020): 

− Diameter: represents the distance between the two most distant nodes in the network model. 

− Shortest Path: This is the shortest path between all network pairs. 

− Closeness Centrality: It expresses how close a node is to other nodes in the network model. More 

specifically, the closeness of a node can be obtained from the average lengths of the shortest paths to 

other nodes within the network model. It can be calculated using the following equation: 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 (𝑏) =
𝑁−1

∑ 𝑑(𝑎,𝑏)𝑎
                     (1) 

where N represents the number of nodes in the network, d(a,b) represents the distance between the pair (a, 

b). 

In addition, all metric calculations are stored in the drone's memory for use in subsequent operations. The 

simulation environment is designed to mimic a real-world situation, representing an area that drones need to 

monitor. Unreal Engine 4.27 (Sanders, 2016) and Microsoft AirSim (Shah et al., 2018) are used to design and 

simulate the experiments; these tools have proven to be suitable for such work. The design can simulate the 

environment, the drones, and all the requirements of the experiments. These tools can simulate complex 

graphics, physical objects, and weather conditions. Each drone in the design is equipped with sensors and 

cameras. The Python 3.11.5 programming language and the Anaconda 2.5 platform are used. The hardware 

used to run the simulations represents a workstation computer with the following specifications CPU Intel(R) 

Core(TM) i9-8950HK 2.90GHz, 32GB RAM, and 4GB GPU. 
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Fig. 1. Environment grid and partitions. 

Fig. 2. Environmental network 

visualization, where each node represents 

an area in the environment and the edges 

represent the possible paths between them. 

2.2. Path planning algorithms 

2.2.1. Boustrophedon path planning algorithm 

This path planning approach is mainly used by dynamic objects such as drones and robots to explore static 

and dynamic environments. Boustrophedon is inspired by how an ox follows a path when plowing the fields 

(agricultural areas). In addition, boustrophedon defines a particular sequence in an environment. It then follows 

this sequence to accomplish a mission of interest (Bähnemann et al., 2021). In the context of this work, the 

algorithm represents the simulation environment as a grid containing subareas (cells). The cells in the 

simulation environment have specific coordinates(x, y). A drone performs surveillance tasks and is responsible 

for a specific area within the simulation environment. The Start Point(SP) and End Point(EP) are represented 

by the following:  

𝑆𝑃 =  (𝑥𝑆𝑡𝑎𝑟𝑡  , 𝑦𝑆𝑡𝑎𝑟𝑡),                       (2) 

𝐸𝑃 =  (𝑥𝐸𝑛𝑑 , 𝑦𝐸𝑛𝑑),                         (3) 

where x and y are the coordinates of the cells in the environment. The algorithm iterates through the cells 

for the drone to determine the following points during operation. The directional points can be defined as 

𝑃𝑃 =  (𝑥𝑖 , 𝑦𝑖),                               (4) 

The generation of paths depends on the connection between the current point(xi, yi) and the neighboring 

point(xi+1, yi+1). The generated paths are considered as the flight sequence of the drone. The optimal path 

without obstacles is based on the "back and forth" of the boustrophedon. In case of obstacles, the optimal path 

is determined based on the A* algorithm as described in Algorithm 1 (Zhang et al., 2022). The cost function 

f(n) for a drone is identified by the cost of the drone to reach the endpoint and can be expressed as follows: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)                           (5) 

where g(n) represents the cost of arriving at cell n from SP, which is the sum of the costs of the paths to 

reach n. Meanwhile, h(n) represents the heuristic estimate (e.g., Euclidean distance) of the cost from cell n to 

the final destination cell. Finally, the dynamics of the path (e.g., height or speed) are considered when defining 

the optimal path. 
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Fig. 3. Boustrophedon algorithm. The dotted lines are drone paths to return to SP,  

while the continuous lines are the regular paths 

2.2.2. Spiral path planning algorithm 

It is used to plan paths for autonomous systems such as drones systematically. Paths generation is based on 

spirals outward/inward from start to final destination. It aims to cover a whole environment in a smooth, 

continuous, and efficient pattern (Mourya et al., 2024). The spiral algorithm is based on polar coordinates with 

the drone’s position. These coordinates are represented as a radius () and an angle () and then converted to 

Cartesian coordinates (x, y). It is formalized as follows: 

𝑥 = 𝑟 ×  cos(𝜃)                                (6) 

𝑦 = 𝑟 × sin(𝜃)                            (7) 

During operation, the next position is determined by the increments of the radius (∆x) and angle (∆𝜃). When 

the radius reaches its maximum, the path ends. The steps of the spiral algorithm are described in detail in 

Algorithm 2. 
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Fig. 4. Spiral path planning. The dotted lines are drone paths to return to SP,  

while the continuous lines are the regular paths 

 

2.2.3. Hybrid trajectory planning: Proposed algorithm 

The proposed path planning algorithm starts with a spiral pattern until it reaches the maximum radius and 

follows a boustrophedon pattern. This strategy minimizes the energy consumption of the drone and the elapsed 

time to complete the tasks. The proposed hybrid strategy is described in Algorithm 3. 

 

Fig. 5. Hybrid planning (proposed): The dotted lines are drone paths to return to SP,  

while the continuous lines are the regular paths 



 

8 

 

2.2.4. Scheduling algorithms 

Task scheduling is critical in drone operations to optimize task completion while minimizing resource 

consumption. Scheduling also plays an important role in emergency drone operations. This thesis considers 

four known algorithms for task scheduling (Liu, 2006; Al-Kateeb & Abdullah, 2024). All scheduling 

algorithms in this work are preemptive because a task can be interrupted (Liu, 2006; Hasan & Al-Rizzo, 2020).  

First Come First Serve (FCFS): Considered the simplest scheduling algorithm, it executes tasks based on 

their exact order of arrival. It does not consider the urgency of the tasks (e.g., priority or deadline). It is used 

in drone missions when the tasks are equally important and their arrival order represents the execution order. 

The completion time Ci for a task i in FCFS is formalized as follows: 

𝐶𝑖 = ∑ 𝑇𝑗
𝑖
𝑗=1                           (8) 

where Tj denotes the execution time of task j. 

Earliest Deadline First (EDF): It schedules tasks based on their deadlines; that is, a task is performed with 

a priority that is the earliest deadline (Hadeed & Abdullah, 2021). Thisapproach is dynamic, as the priority 

changes as deadlines approach or new tasks arrive. This algorithm is used in drone missions when time is of 

the essence. For example, delivering medical supplies to specific areas in disaster situations is a high priority. 

The schedulability test of this algorithm can be formalized as follows: 

∑
𝐶𝑖

𝑇𝑖

𝑛
𝑖=1 ≤ 1                           (9) 

where n represents the number of tasks. 

Shortest Process First (SPF ) prioritizes tasks based on the shortest processing time. The goal is to minimize 

the average completion time. This approach is also known as Shortest Job First (SJF). In drones, it is used to 

maximize throughput in missions. The average completion time can be expressed as: 
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𝐴𝑣𝑔(𝐶𝑖) =
1

𝑛
∑ 𝐶𝑖

𝑛
𝑖=1                           (10) 

Priority: This algorithm is useful for drone missions when there are tasks of mixed priority. A task i is 

necessarily scheduled before task j if: 

𝑃𝑖 > 𝑃𝑗                             (11) 

2.2.5. Evaluation metrics 

This paper will be judged on the following criteria:  

− Energy: The energy consumed during the mission. 

− Time: The time spent on missions. 

The flight altitude that the drones follow in the simulations is 40 meters (see Figure 6). Our experiments 

have shown that this particular height is more efficient because it has fewer obstacles to overcome in the 

environment. For accuracy purposes, each experiment is run five times and then the average is considered. 

 

Fig. 6. Different heights are used by drones during operations. The red dotted lines represent a flying height of 10 meters, the 

green dotted lines represent a flying height of 20 meters, the blue dotted lines represent a flying height of 30 meters, and the 

black dotted lines represent a flying height of 40 meters. The 40 meters of height avoid more obstacles than the other heights. 

Therefore, this work considers it the optimal height for this environment 

2.2.6. Research workflow 

Figure 7 illustrates the workflow of this research and describes the detailed steps as follows: 

− Establish a connection between the AirSim simulator and the Unreal Engine environment. 

− Upload the positions of the subareas into the environment. The drones will visit these subareas. 

− Determine the required flight altitude that the drones will use for all missions. 

− Specify the path planning algorithm (Spiral, Boustrophedon, or Hybrid) that the drones will use during 

operations. Regardless of the selected algorithm, a drone will return to its home position when it 

completes its mission. 

− The drone flies autonomously according to the coordinates (X, Y, Z) given by the path planning 

algorithm to survey, cover or monitor the area. 

− The emergency task buffer is periodically checked. The buffer is designed to receive emergency tasks 

from the ground station and store them in real time. 
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− If the buffer has emergency tasks, the drone selects one based on the selected scheduling algorithm 

(FCFS, EDF, SPF, or Priority). The current task is interrupted and its information (e.g., position) is 

maintained with the goal of completing it later. 

− Distance sensors and LiDAR are used to navigate around obstacles during the mission. 

− The drones move using yaw and pitch as the drones in this work use a down camera. 

− After completing all emergency tasks (e.g., the buffer is empty), the drone restores the maintained 

unfinished (non-emergency) tasks to complete them. 

 

Fig. 7. The proposed workflow diagram 

3. RESULTS AND DISCUSSIONS 

3.1. Results 

This section describes the simulation results. It is worth noting that the simulation environment is 

considered static and the path planning is offline. As mentioned above, the scheduling type is preemptive 

because a task can be interrupted when emergency tasks arrive. On the other hand, emergency tasks cannot be 

interrupted due to their criticality. The general settings of AirSim are described in Table 1. 

 

 

 

 

 



 

11 

Tab. 1. General settings of AirSim that are used in the simulations 

Element Parameter Description 

SimMode Multirotor Use drone simulation. 

ViewMode NoDisplay 
This will freeze rendering and consume workstation 

power. 

ClockSpeed 1 
This value means that the simulation clock has 1 second, 

which is the same as the real clock.. 

Vehicles 
Drone 1, Drone 2, Drone 3, 

Drone 4 
The list of drones involved in the simulations. 

Vehicle_type SimpleFlight Drones (Quadcopter) 

Sensors 

Camera Camera: has five directions 

front_center = True 

front_right = False 

front_left = false 

bottom_cente = True 

back_center = False 

Distance 
Distance Sensor: it points 

to the front of the drone. 

X Y Z = (0, 0, -1) 

Yaw Pitch Roll = (0, 0, 0) 

MinDistance = 0.2 

MaxDistance = 40 

LiDAR 

NumberOfChannels = 64 

Range = 4 

PointsPerSecond = 

100,000 

HorizontalFOVStart = -180 

HorizontalFOVEnd = 180 

VerticalFOVUpper = 90 

VerticalFOVLower = -90 

X Y Z = (0, 0, -0.1) 

Environment Conditions Wind 

The wind speed values are 

based on the Remote 

Sensing Center at the 

authors' university. The 

unit used is meters per 

second. 

Moderate Winds = 8 m/s 

Strong Winds = 13 m/s 

High Winds = 18 m/s 

 

As mentioned above, the scheduling algorithms used in this work are SPF, FCFS, Priority, and EDF. Three 

path planning algorithms are used: Spiral, Boustrophedon, and Hybrid (proposed). The focus is on two key 

performance metrics: elapsed time and energy consumption. The results include 12 combinations of task 

scheduling and path planning. Each combination contains one path planning and one task scheduling approach.  

As for the elapsed time evaluation, the combinations are analyzed and evaluated. This analysis aims to find 

the best integration between the task scheduling and path planning algorithms. Figure 8 shows the descriptive 

statistics of the elapsed time across scheduling and coverage path planning.  

 

Fig. 8. Elapsed time obtained from the scheduling  

and coverage path planning algorithms 
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As observed, the hybrid coverage path planning achieves the lowest elapsed times. On the other hand, 

Boustrophedon shows the highest times, and Spiral is considered intermediate, but closer to the hybrid 

algorithm. Similar behavior is observed when evaluating battery consumption using the same combinations of 

algorithms (see Figure 9). 

 

Fig. 9. Energy consumption obtained from the scheduling  

and coverage path planning algorithms 

However, it is crucial to test the variations of the combination to evaluate its stability. For this purpose, box 

plots are generated considering all runs of the experiments. Each box plot shows five quartiles (min, lower, 

middle, upper, and max). In terms of elapsed time, Figure 10 shows that almost all combinations reflect stable 

behavior because the ranges of the quartiles are close to each other. However, the Hybrid-SPF combination 

shows more stable behavior than the other combinations. Also, the median (middle quartile) of the Spiral 

algorithm performs better than the other combinations in all combinations. Similar behavior is obtained when 

evaluating battery consumption, as shown in Figure 11. 

 

Fig. 10. Variations in the performance of the combinations between task scheduling  

and coverage path planning in terms of elapsed time 

 

Fig. 11. Variations in the performance of the combinations between task scheduling  

and coverage path planning regarding energy consumption 
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In addition, based on the above results, further analysis and evaluation of the performance is required. 

Analysis of Variance (ANOVA) is performed to accurately evaluate the results and show whether the obtained 

results are statistically significant. The hypothesis test is performed on the mean values of the coverage path 

planning algorithms in terms of time consumption as follows: 

− The null hypothesis (H0) states that the means of the coverage path planning algorithms are equal and 

can be formalized as follows: 

𝜇𝐻𝑦𝑏𝑟𝑖𝑑 = 𝜇𝐵𝑜𝑢𝑠𝑡𝑟𝑜𝑝ℎ𝑒𝑑𝑜𝑛 = 𝜇𝑆𝑝𝑖𝑟𝑎𝑙               (12) 

− The alternative hypothesis (H1) states that the means are not equal to each other: 

𝜇𝐵𝑜𝑢𝑠𝑡𝑟𝑜𝑝ℎ𝑒𝑑𝑜𝑛 ≠ 𝜇𝑆𝑝𝑖𝑟𝑎𝑙 ≠ 𝜇𝐵𝑜𝑢𝑠𝑡𝑟𝑜𝑝ℎ𝑒𝑑𝑜𝑛           (13) 

The confidence level used in this analysis is given by: 

Confedence Level =
95

100
 → 𝛼 = 0. 05                    (14) 

The ANOVA results for Elapsed Time show that the F-statistic is 0.0089 and the p-value is 0.9911. These 

results reflect the fact that the difference between the three path planning methods (Hybrid, Spiral, and 

Boustrophedon) is not statistically significant. This is because the p-value is higher than 0.05 (significance 

level). This means that the three algorithms reflect similar variation behavior. However, the scheduling 

algorithms have a significant impact on the elapsed time. 

Similarly, battery consumption is analyzed for each scheduling algorithm and coverage path planning 

method. The results show that hybrid coverage path planning consistently reflects lower energy consumption. 

On the other hand, Boustrophedon tended to consume more energy. Among the planning algorithms, SPF 

combined with Hybrid or Spiral reflected the most efficient battery usage. 

As a final step in the analysis of this work, the proposed path planning algorithm is tested under different 

wind speeds to show its performance under different weather conditions. This test also adds a dynamic nature 

to the designed environment. Figure 12 shows the simulation environment from different angles, showing the 

performance of the drone using the proposed path planning algorithm as the wind speed varies. The red 

trajectories in the figure reflect the wind speed of 8 m/s, the green trajectories for 13 m/s, and the blue 

trajectories for 18 m/s. It is worth mentioning that these speeds are considered standard wind speeds during 

different seasons in the geographical areas of the researchers, based on the Remote Sensing Center in Mosul, 

Iraq. As can be seen, the trajectories are curved (not straight) due to the effect of the north wind on the drone. 

In addition, the slope of the trajectories is based on the wind speed used. This situation forces the drone to 

expend more effort (e.g., time and energy) to reach the target. Figure 13 shows the time consumed by a drone 

during operation. The time consumed by the drone increases as more areas are visited. Figure 14 shows the 

energy consumption of the drone. The battery consumption increases as more regions are visited within the 

simulation environment. Based on the two figures from, it can be observed that the drone performance 

decreased significantly when the wind speed exceeded 13 m/s. This means that there is a trade-off between 

wind speed and drone performance. Compared to the normal wind speed, the moderate (8 m/s) and strong (13 

m/s) wind speeds have a slight difference. The high wind speed (18 m/s) has a significant impact on the 

performance of the drone and consumes a lot of flight time and energy. 
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Fig. 12. Trajectories of the drone under different wind speeds using the proposed path planning algorithm 

 

Fig. 13. Drone time consumption when facing wind speeds of 8, 13 and 18m/s  

using the proposed path planning algorithm. The x-axis represents the number of visited areas  

in the simulation environment, and the y-axis represents the time consumed in minutes 
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Fig. 14. Drone battery usage when facing wind speeds of 8, 13 and 18m/s  

using the proposed path planning algorithm. The x-axis represents the number of visited areas  

in the environment and the y-axis represents the battery usage percentage 

4. DISCUSSION 

According to the results, the innovative modeling of the environment as a network embedded in the drones 

reduced both the energy and time consumed by the drones. In other words, uploading the network model of 

the environment and its calculations into the drones plays an important role in extending the drones' vision to 

the environment. It enables the drones to make decisions more quickly. For example, when facing an obstacle, 

the closeness centrality is used to determine which direction is better in terms of distance. Since the closeness 

of a node is based on the shortest paths, the proposed algorithm successfully has a collision-free feature, which 

means that the number of collisions is zero in all simulations of the proposed approach. This makes the 

proposed path planning algorithm ideal for emergency and disaster applications or applications that require 

immediate response.  

Furthermore, the combination of SPF scheduling with hybrid path planning consistently outperformed in 

terms of efficiency and energy consumption. However, when looking at the elapsed time for different 

combinations, there are discrepancies between the mean and median values. This is due to a small number of 

high latency cases where the algorithms encounter complex scenarios such as longer computation times for 

certain paths, the presence of obstacles that increase execution times, or the side effect of using certain task 

scheduling schemes such as EDF that can cause task bottlenecks that lead to longer execution times in certain 

runs. In addition, the results also show large standard deviations, which reflect high variability in elapsed time. 

In practice, this is expected due to the nature of drone path planning and task scheduling, such that EDF and 

priority scheduling sometimes create scheduling bottlenecks that extend execution time. In addition, the 

presence of obstacles can also lead to extreme values that contribute to high standard deviations. The locations 

of the obstacles, the target, and the direction of the drone can also be considered as causes. In addition, the 

results of testing the proposed path planning algorithm under different wind speeds showed that a high wind 

speed significantly affects the performance of the drones. 

Recommendations for drone developers can be summarized as follows: 

− Environment: The environment of interest should be accurately studied in terms of geography and other 

characteristics. Modeling the environment as a network model is efficient in supporting the decisions of 

the drones. 

− Start and End Points: Determining the start and end points within an environment is a crucial aspect that 

should be studied in detail, as it plays a significant role in the consumption of drone resources.  

− Objectives: Monitoring objectives should be well defined before an algorithm is adopted. This will help 

drone developers consider a wide range of potential events that may occur during drone operation. 

− Mission Constraints: Special attention should be paid to constraints related to the drone's resources, the 

nature of the environment, and other mission requirements. Changes in the environment may occur 

during operations in dynamic environments such as weather conditions or when facing a flying object. 
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5. CONCLUSIONS 

This work introduced a framework that integrates three drone path planning algorithms (Spiral, 

Boustrophedon, and Hybrid) with four task scheduling algorithms (FCFS, SPF, EDF, and Priority). Hybrid 

path planning, which is a combination of Boustrophedon and Spiral algorithms, was proposed in this work. 

The combinations of path planning and task scheduling algorithms were evaluated in terms of energy and time 

consumption. This work also highlights the critical role of combined scheduling and path planning algorithms 

in optimizing drone operations. The combination of SPF scheduling and hybrid path planning consistently 

outperformed in terms of efficiency and energy consumption. This makes it ideal for most applications, 

including emergency drone applications. Modeling the environment using network science approaches was 

highly efficient in minimizing drone resources. These findings are critical for drone developers seeking to 

optimize drone systems for time-sensitive missions or energy-constrained environments. The results highlight 

the need to adapt the algorithm based on operational priorities. One of the main limitations of the proposed 

algorithm is that it has not been tested in the presence of unexpected flying objects due to the lack of scenarios. 

For example, a bird attacks the drone during flight. Future work will explore the scalability of these results in 

more complex and dynamic operational scenarios. Also, more path planning and task scheduling algorithms 

can be involved and tested with different indicators and conditions. 
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