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A new approach for diabetes risk detection  

using quadratic interpolation flower  

pollination neural network 

Abstract 

This study aims to evaluate and compare five algorithms in diabetes detection, namely Flower Pollination 

Neural Network (FPNN), Particle Swarm Optimization Neural Network (PSONN), Bat Artificial Neural 

Network (BANN), Stochastic Gradient Descent (SGD), and Quadratic Interpolation Flower Pollination 

Neural Network (QIFPNN). These algorithms were tested on a diabetes risk dataset divided into training, 

validation, and testing subsets. The evaluation was based on three main aspects: accuracy, F1 score, and 

training time. Experimental results showed that QIFPNN outperformed others with an average accuracy 

of 97.90% and an F1 score of 98.30%, although it required the longest training time (4107.89 seconds). 

FPNN and BANN achieved competitive accuracy (97.34% and 97.43%) and F1 scores (97.84% and 

97.91%), while SGD offered a favorable trade-off with accuracy of 96.87%, F1 score of 97.42%, and the 

shortest training time (584.50 seconds). PSONN performed less well with an average accuracy of 89.26% 

and an F1 score of 91.45%. These results indicate that QIFPNN can be relied upon as an effective diabetes 

risk detection model with superior predictive performance. Although the training time of QIFPNN is longer 

due to its sophisticated optimization process, this is only a concern during model development, as the final 

trained model can be efficiently used for real-time prediction in practical applications. 

1. INTRODUCTION 

Diabetes mellitus is a chronic disease resulting from impaired insulin production or utilization, leading to 

high blood glucose levels. If left untreated, it can lead to serious complications such as cardiovascular disease, 

kidney failure and vision loss. The global burden of diabetes is growing rapidly. In 2021, 537 million people 

worldwide will be living with diabetes, rising to 783 million by 2045 (International Diabetes Federation, 2024). 

Indonesia ranks fifth in the world with 19.5 million cases in 2021, expected to rise to 28.6 million by 2045 

(Mediakom, 2024). 

This trend has prompted researchers to develop accurate machine learning (ML) prediction methods. Abed 

Mohammed et al. (2024) proposed a hybrid K-means and PCA method with Random Forest (RF), which 

achieved 95.2% accuracy. Amma (2024) introduced En-RfRsK, which integrates RF, k-NN and R-SVM and 

achieved 88.89% accuracy. Nissar et al. (2024) applied several ML algorithms, with RF achieving 96.15%. 

Bhat et al. (2022) compared six models and found RF to be the most effective (98%). Chaves & Marques 

(2021) found neural networks to be the best with 98.1% accuracy. M. S. Islam et al. (2023), Oladimeji et al. 

(2024) and Emon et al. (2021) also confirmed the superiority of RF with accuracies up to 99%. M. M. F. Islam 

et al. (2020) used cross validation and reported 97.4% with RF. Shaik & Siddique (2024) investigated diabetes 

classification using ECG and PPG signals. While many studies report high accuracy, most use only training-

test splitting and oversampling, which may not ensure robust generalization. This limitation motivates the 

development of a more robust model with rigorous validation. 
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Artificial intelligence has become an important pillar in the development of intelligent diagnostic tools, 

especially in the early detection of chronic and degenerative diseases. Recent studies have demonstrated the 

effectiveness of artificial neural networks (ANN) in medical diagnostics, including the identification of 

osteoarthritis using vibroarthrography signals (Machrowska et al., 2024b; Machrowska et al., 2024a). For 

example, (Machrowska et al., 2024b) reported an MLP-based classification accuracy of 91.07% for the 

detection of knee osteoarthritis based on recurrence quantification analysis. In a follow-up study, Machrowska 

et al. (2024a) applied EEMD-DFA algorithms combined with ANN classifiers and achieved an accuracy of 

93%, with both sensitivity and specificity reaching 0.93. Similarly, Karpiński, (2022) investigated 

vibroacoustic signal analysis for osteoarthritis diagnosis using machine learning techniques and showed 

promising results with reduced diagnostic complexity. The application of ANN is not limited to 

musculoskeletal disorders. Kulisz et al. (2021) successfully modeled the groundwater quality index using ANN 

with high predictive accuracy (R² = 0.9984), and Kujawska et al. (2022) demonstrated that ANN and LSTM 

models outperformed traditional regression methods in predicting PM10 air pollution levels. These studies 

confirm that ANN-based approaches have great potential for modelling complex, non-linear biomedical data, 

especially when coupled with hybrid optimization mechanisms. The proposed QIFPNN model, which 

combines neural networks with Quadratic Interpolation Flower Pollination optimization, is well aligned with 

this trend and thus represents a promising direction for improving diabetes detection systems. Although these 

studies did not focus specifically on diabetes, they reflect a broader trend in medical AI research that 

emphasizes data-driven decision support and rigorous model evaluation. However, in the context of diabetes 

prediction, different studies often use simpler data partitioning strategies. 

All previous studies on diabetes identified their best models by dividing the data into only two groups: 

training data and test data. This approach potentially limits the accuracy of diabetes identification. In the 

studies by Bhat et al. (2022); M. S. Islam et al. (2023); and Oladimeji et al. (2024), the datasets were 

conditioned using oversampling techniques to create balanced datasets with equal class distributions. Here, we 

propose a novel model using the Quadratic Interpolation Flower Pollination Neural Network (QIFPNN). 

QIFPNN is designed to identify the best model by utilizing three different sets of data: training data, validation 

data, and test data. These groups are managed based on stratified k-fold cross-validation (Prusty et al., 2022; 

Raschka, 2018; Mahesh et al., 2023) applied to unbalanced datasets. This stratification ensures that each fold 

maintains the same class proportions as the original dataset. This approach provides excellent model stability 

in recognizing training, validation, and test data, including unseen data excluded from model building. 

QIFPNN has been shown to perform effectively on balanced and unbalanced, binary and non-binary data sets 

(Polly et al., 2021; 2023). 

Given the high prevalence and significant impact of diabetes, the development of more accurate and stable 

prediction methods is critical. An ideal prediction method is expected to predict the risk of diabetes with high 

accuracy, especially in the early stages. QIFPNN is a modification of the Flower Pollination Algorithm (FPA) 

designed to optimize the training process of artificial neural networks, specifically the Multi-Layer Perceptron 

(MLP). QIFPNN introduces a novel mechanism, Quadratic Interpolation Flower Pollination (QIFP), to 

improve the efficiency and accuracy of finding optimal solutions during neural network training. Using 

quadratic interpolation (QI) in global pollination improves the efficiency of search space exploration, as QI is 

more effective in finding local minima than relying solely on Levy flight or random search. Thus, QIFPNN 

can prevent neural networks from overfitting or getting trapped in suboptimal solutions, which is often the 

case with conventional optimization methods (Polly et al., 2021; 2023). With the development of a better 

prediction method, it is hoped that early detection of diabetes can be improved, disease management can be 

enhanced, and healthcare costs can be reduced. Therefore, the development of more accurate and stable 

diabetes prediction models is a critical step in the prevention and control of diabetes mellitus. 

In general, this study aims to develop a new model for predicting diabetes risk that is more accurate and 

stable. Specifically, the objectives of this research are: (1) to develop a diabetes detection model using the 

QIFPNN approach and (2) to compare the performance of the developed model with other metaheuristic-based 

algorithms such as Flower Pollination Neural Network (FPNN), Bat Algorithm Neural Network (BANN), and 

Particle Swarm Optimization Neural Network (PSONN) (Aalimahmoody et al., 2021; Al Bataineh et al., 2022; 

Chiroma et al., 2016; Yang; 2012; 2014; 2020) and Stochastic Gradient Descent (SGD) to evaluate the 

effectiveness of the developed model in diabetes detection. This research is expected to significantly contribute 

to the development of new methods for more accurate and stable diabetes detection. The resulting detection 

model can be used for diabetes screening, enabling early detection and more appropriate treatment. In addition, 
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this study is expected to provide valuable information for policy makers in designing programs to prevent and 

control diabetes. 

2. METHOD 

2.1. Data 

This study utilizes the Early Stage Diabetes Risk Prediction dataset from the UCI Machine Learning 

Repository. UCI (2020) which contains information on the risk of early-stage diabetes based on several factors 

measured by patients. 

The dataset consists of categorical and numerical variables. Most of the features in this dataset are binary 

(in "yes" or "no" format) and represent the presence of certain symptoms or conditions, except for the feature 

"age" which is a numeric (integer) value indicating the patient's age. The dataset contains 16 attributes, 15 of 

which are input features used as predictors, and 1 of which is the output label indicating diabetes risk, which 

is the target of the classification. The details of the attributes are shown in Table 1. 

Tab. 1. Details of the attributes from the "Early Stage Diabetes Risk Prediction" dataset 

Attributes Data Type Value Description 

Age Numeric 16 to 90 years Patient age range 

Gender Categorical Male/Female Patient gender 

Polyuria Categorical Yes/No Frequent urination 

Polydipsia Categorical Yes/No Frequent thirst 

Sudden weight loss Categorical Yes/No Sudden weight loss 

Weakness Categorical Yes/No Feeling weak 

Polyphagia Categorical Yes/No Excessive hunger 

Genital thrush Categorical Yes/No Fungal infections in the genital area 

Visual blurring Categorical Yes/No Blurred vision 

Itching Categorical Yes/No Itching 

Irritability Categorical Yes/No Irritability 

Delayed healing Categorical Yes/No Slow wound healing 

Partial paresis Categorical Yes/No Weakness in parts of the body 

Muscle stiffness Categorical Yes/No Muscle stiffness 

Alopecia Categorical Yes/No Baldness 

Class Categorical Positive/Negative Diabetes risk classification results: Positive 

(diagnosed with diabetes) or Negative (not 

diagnosed with diabetes) 

 

This dataset consists of 520 patient samples, divided into 320 samples (approximately 61.5% of the total 

dataset) classified as positive (diagnosed with diabetes) and 200 samples (approximately 38.5% of the total 

dataset) classified as negative (not diagnosed with diabetes), making this dataset class unbalanced, with more 

samples classified as positive than negative. Most of the trait attributes in this dataset are binary, with values 

limited to "Yes" or "No". It indicates the presence of symptoms or conditions associated with diabetes risk. 

The Age characteristic ranges from 16 to 90 years and represents the age variation of the patients in this dataset. 

There are no missing values in this dataset. 

Data preprocessing is critical to ensuring the quality of the dataset used in machine learning. The 

preprocessing steps applied to this dataset include techniques such as categorical data encoding and 

normalization. The categorical data encoding technique converts categorical data such as "Yes"/"No" for 

binary attributes, "Male"/"Female" for gender attributes, and "Positive/Negative" for class attributes into 

numerical format, i.e., Yes = 1, No = 0 for binary attributes, Male = 1, Female = 0 for gender attributes, and 

Positive = 1, Negative = 0 for the class attribute. The normalization technique is applied to the numeric Age 

attribute, which has a wide range of values (from 16 to 90). The normalization technique scales the Age values 

to a range of 0 to 1 using equation (1). 

 𝑦 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                     (1) 
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where:  𝑥       – the Age feature, 

𝑦       – the normalised data for the Age feature, 

  𝑥𝑚𝑎𝑥 – the maximum values of the Age feature, 

  𝑥𝑚𝑖𝑛 – the minimum values of the Age feature. 

2.2. Description of QIFPA 

The architecture of QIFPNN can be seen in Figure 1, where it adopts the MLP architecture. In this study, 

the QIFPNN architecture satisfies several aspects, including the number of neurons in the input layer 

corresponding to the number of features in the dataset. For the Early Stage Diabetes Risk Prediction dataset, 

there are 15 input features, so the input layer has 15 neurons (𝑒1 to 𝑒15). The number of hidden layers is one, 

and the number of neurons in it follows equation (2) (Lin et al., 2015; Polly et al., 2021) (ℎ1 to ℎ5). In the 

output layer, since this is a binary classification problem, the output layer will have one neuron (𝑦1) represents 

the predicted class (positive / negative). 

𝑏 = √(𝑎 + 𝑐) + 𝑍                                                                    (2) 

The activation function used in the hidden layer 𝑓(ℎ_𝑜𝑢𝑡) is given by equation (3), and the activation 

function in the output layer 𝑓(𝑦_𝑜𝑢𝑡) is shown in equation (4), both of which are binary sigmoid functions. 

The binary sigmoid function converts the output to a probability ranging from 0 to 1 (Polly, 2022). The binary 

sigmoid result at the output layer is then used to determine whether the result belongs to the positive (1) or 

negative (0) class, using a threshold of 0.5. 
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Fig. 1. MLP architecture for diabetes with the number of neurons  

in the input layer as 𝒂 = 𝟏𝟓, the number of neurons in the hidden layer as 𝒃 = 𝟓,  

and the number of neurons in the output layer as 𝒄 = 𝟏 

where:  𝑏 – the number of neurons within the hidden layer, 

𝑎 – the number of neurons within the input layer, 

  𝑐 – the number of neurons within the output layer, 

𝑍 – it is set to one. The setting of 𝑍 = 1 aims to simplify the architecture size of QIFPNN for faster 

learning time. 

𝑓(ℎ_𝑜𝑢𝑡) =
1

1+exp⁡(−ℎ_𝑜𝑢𝑡)
⁡ ∈ (0,1)                                                     (3) 

𝑓(𝑦_𝑜𝑢𝑡) =
1

1+exp⁡(−𝑦_𝑜𝑢𝑡)
⁡ ∈ (0,1)                                                    (4) 
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QIFPNN integrates QI and FPA into a neural network and represents an innovative approach to improve 

the optimization and training process of neural networks. FPA is a metaheuristic optimization algorithm based 

on the flower pollination process. This algorithm has two main stages: Global Pollination and Local 

Pollination. In Global Pollination, the agent (solution) performs exploration in the global search space, 

mimicking the cross-pollination process where pollen (solution information) is carried by wind or distant 

insects. In local pollination, the agent performs exploration around the current solution at a closer distance, 

mimicking the self-pollination process, which is more local. Key elements in FPA include Levy Flight and 

Switch Probability(p). FPA uses Levy Flight to support global exploration, a random search technique that 

jumps far from one solution to another in the search space. The switch probability(p) in FPA determines 

whether the agent will perform global or local pollination. QI is a numerical optimization method used to 

estimate the minimum point of a quadratic function. QI involves fitting a quadratic function (a 2nd degree 

polynomial) based on three points on the curve, and from this fit, determines a new minimum point. This 

technique is used to refine the search for a more precise solution, especially in local search environments. 

In QIFPNN, the global pollination in FPA is modified using QI. Thus, it is known as the Quadratic 

Interpolation Flower Pollination Algorithm (QIFPA). The main changes are as follows: 

Global pollination with QI: In the global pollination process, QIFPA performs random searches using QI 

to refine the global search process. QI determines a better local solution by estimating the optimal position 

based on quadratic function fitting. The global pollination process with QI is given by equation (5). 

�̅�𝑖
𝑡+1 = �̅�𝑖

𝑡 + �̅�(𝑔∗̅̅ ̅ − �̅�𝑖
𝑡)                                                          (5) 

where:    �̅�𝑖
𝑡 – the pollen vector position or the solution vector for 𝑖 (𝑖 = 1,2,… , 𝑛) at iteration 𝑡, 
𝑛 – the population size or the number of solution vectors, 

𝑔∗̅̅ ̅ – the best solution vector currently found among all solutions at this iteration, 

�̅� – the step vector. 

The population is referred to in Equations (6) and (7). 

𝑋𝑡 = {�̅�1
𝑡, �̅�2

𝑡 , … , �̅�𝑛
𝑡 }                                                             (6) 

�̅�𝑖
𝑡 = (𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑑

𝑡 )                                                           (7) 

Population-based metaheuristic algorithms such as QIFPNN imply that each individual/agent/pollen 

(solution) in the population acts as a candidate solution. At each generation (iteration), the algorithm improves 

the quality of the population. This population represents a set of solution vectors in the search space. 𝑋𝑡 is the 

set of solution vectors at iteration 𝑡while 𝑑 is the dimension or the number of solution variables. Thus, each 

element of the solution vector can be written as 𝑥𝑖𝑧
𝑡  (𝑧 = 1,2,… , 𝑑). 

The derivative of the quadratic polynomial function is used to find the value of 𝑟∗ which results in the 

minimum or maximum fitness. Figure 2 shows this process. Then the step vector �̅� is constructed by the 

following steps: 

1.  Using a normal distribution �̅�~𝑁(𝜇, 𝜎) to generate �̅�, where 𝜇 = 𝑟∗ and 𝜎 = 𝑓(𝑔∗), 
2. Set zero, 20 per cent of the elements of the vector �̅� using Equation (8), 

Q
c
= {

0,

Q
c
,  

c=l

  otherwise
                                                                 (8) 

where: 𝑄𝑐 – an element of the step vector �̅� at index 𝑐, 

𝑙 – a random integer that satisfies 𝑙 ∈ [1, 𝑑], generated for 20 per cent of 𝑑. 
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Fig. 2. The illustration of the minimum point 𝒓∗ of a quadratic function  

based on three points on the curve 

Next, QIFPA's search space starts from a narrower region and gradually expands until it reaches the search 

space [LbReal,⁡UbReal]d. Here, LbReal and UbReal are the lower and upper bounds of the search space, 

respectively, with values of 𝐿𝑏𝑅𝑒𝑎𝑙 = −80 and 𝑈𝑏𝑅𝑒𝑎𝑙 = 80. This expansion process is performed in the 

following steps: 

1. Identification of the initial search space: 

[Lb,Ub]d=[-1,1]d                                                                 (9) 

2. For every 50 iterations, expand the search space by: 

[Lb,Ub]
d
= {

[Lb− 1,Ub+1]
d

t  MOD 50=0

[Lb,Ub]
d

otherwise
                                    (10) 

3. Repeat step 2 until 𝐿𝑏 equals 𝐿𝑏𝑅𝑒𝑎𝑙 and 𝑈𝑏 equals 𝑈𝑏𝑅𝑒𝑎𝑙. Where the values of 𝐿𝑏𝑅𝑒𝑎𝑙 and 

𝑈𝑏𝑅𝑒𝑎𝑙 are of integer type, and zero is the result of the sum of 𝐿𝑏𝑅𝑒𝑎𝑙 and 𝑈𝑏𝑅𝑒𝑎𝑙. 
Local pollination follows the original FPA mechanism, where agents perform local searches based on the 

difference between the current solution and the best solution nearby, referencing equation (11). 

�̅�𝑖
𝑡+1 = �̅�𝑖

𝑡 + 𝜀(�̅�𝑗
𝑡 − �̅�𝑘

𝑡)                                                        (11) 

Random walk 𝜀 is a real random number uniformly distributed under the condition that 𝜀 is in the range 

[0,1]while �̅�𝑗
𝑡 and �̅�𝑘

𝑡  represent the positions of the pollen 𝑗 and 𝑘respectively. 

2.3. Implementation in MLP 

QIFPNN uses QIFPA to train the parameters (weights and biases) of the neural network architecture, 

specifically the MLP architecture. The pollen position vector or solution vector �̅�𝑖 for diabetes is shown in 

Figure 3. 

 

𝑣1⁡1 ⋯ 𝑣15⁡1 𝑠1⁡1 𝑣1⁡2 ⋯ 𝑣15⁡2 𝑠1⁡2 ⋯ 𝑣1⁡5 ⋯ 𝑣15⁡5 𝑠1⁡5 𝑤1⁡1 ⋯ 𝑤5⁡1 𝑠2⁡1 

↓ 
 

𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 ⋯ 𝑥𝑖⁡86 

Fig. 3. Illustration of the pollen position vector or solution vector for diabetes  

with 𝒂 = 𝟏𝟓 (number of input neurons), 𝒄 = 𝟏 (number of output neurons),  

and 𝒃 = 𝟓 (number of neurons in the hidden layer) 

where the number of solution variables 𝑑 is equal to the number of weights and biases, namely: 

𝑑⁡⁡ = (15 × 5) + 5 + (5 × 1) + 1 = 86 
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2.4. Optimisation process 

The training process of the neural network model in QIFPNN is a combination of FPA with QI, which 

serves as the optimization mechanism for training the weights and biases of the neural network. The training 

process is shown in Figure 4. The following is a step-by-step explanation of the model training process. 

The process begins by defining the architecture and parameters of QIFPNN, including the number of 

neurons in the input, hidden, and output layers. (𝑎, 𝑏, 𝑐)the population size of the pollen grains (𝑛); the lower 

and upper bounds [𝐿𝑏𝑅𝑒𝑎𝑙, 𝑈𝑏𝑅𝑒𝑎𝑙]the error target (𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑟𝑟𝑜𝑟)the convergence iteration threshold 
(𝑖𝑡𝑒𝑟𝑇ℎ𝑂𝑓𝐶𝐴)the maximum number of iterations (𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)and the switching probability (𝑝). 
QIFPNN performs optimization using QIFPA, which replaces gradient-based optimization methods (such as 

Stochastic Gradient Descent) with a metaheuristics-based approach. The optimization steps are as follows: 

− Population Initialisation: 

1. At the beginning of the training process, a group of agents/pollen grains/solutions (𝑥𝑖) is initialized. 

Each agent represents a set of weights and biases of the neural network. 

2. The initial weights and biases are randomly initialized within the range of (𝑥𝑖 = 𝐿𝑏 +

𝐵𝑜𝑟𝑑𝑒𝑟[0,1](𝑈𝑏 − 𝐿𝑏))according to a uniform distribution. 

True

· Determine the candidate for the best solution g*
 by evaluating the fitness of the training data in 

the initial population.

· Compute the globalBestAccuracy by applying g*
 to the validation data.

If the random number is less than p

· Utilize quadratic interpolation to generate a d-dimensional step vector Q 

· Apply Equation (5) to execute global pollination

True

· Draw ϵ from a uniform distribution within the range [0,1]

· Apply xi
t+1=xi

t + ϵ (xj
t - xk

t) for local pollination

False

· Utilize the new solution xi
t+1

​ to evaluate fitness using the training data

· If the fitness of xi
t+1

​ is less than the fitness of xi
t
​, then set xi

t
​ equal to xi

t+1
​

· If the fitness of xi
t+1

​ is less than the fitness of g*
, then update g*

· Set the current best solution to bs=g*
· Assign the value of accuracyOfValData to globalBestAccuracy

· Initialize countIterOfConvAccuracy to 0

Finish

Increment t by 1

Start

As long as the stopping conditions are not satisfied

False

For each i from 1 to n

Proceed to the next i

Calculate the classification accuracy of the validation data (accuracyOfValData) by utilizing g*

If (accuracyOfValData is greater than or 

equal to globalBestAccuracy)

True

False

· Handle the lower and upper bounds

· Increment countIterOfConvAccuracy by 1

Display the best solution bs that has been identified

Specify architecture and parameters of QIFPNN: [number of neurons in the input, hidden, and output 

layer (a, c, b); number of population/flowers/pollen gametes (n); the real lower and upper bounds 

[LbReal,UbReal]; target error (targetError); limit of convergence iteration (iterThOfCA); maximum 
iteration (maxIteration); switch probability (p)]; 

Initialization: t = 0; countIterOfConvAccuracy = 0; Load the diabetes training and validation data;

verify whether population regeneration is required

 

Fig. 4. Flowchart of the QIFPNN training process 

− Fitness Evaluation (Loss Function Evaluation): 
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Each agent in the population is evaluated to determine how effectively it (the set of weights and biases) 

minimizes the loss function. This is achieved by passing the input data through the neural network and 

calculating the error or loss at the output using the Mean Square Error (MSE) loss function. 

− Global Pollination with QI: 

At the global pollination stage, QIFPA uses QI to update weights and biases. QI aims to find a globally 

superior solution by estimating the optimal position of weights and biases through quadratic function fitting. 

The three best current solutions perform quadratic interpolation, which predicts a new optimal point in 

parameter space. Weights and biases are updated using this optimal point, accelerating convergence to a 

superior solution. This allows the algorithm to perform a more intelligent global search than random search 

methods. 

− Local Pollination: 

1. In the local pollination phase, agents exploit solutions in their environment. Like local search techniques, 

agents attempt to improve the weights and biases based on the best available solutions. 

2. Local pollination uses an exploitation strategy where the weights and biases are updated based on the 

best solution within the population. 

3. The switching probability determines whether an agent will perform global pollination (using QI) or 

local pollination. This probability is set to 0.8 to ensure that global pollination is performed more often 

than local pollination. 

− Iteration until convergence: 

The global and local pollination processes are repeated for several iterations until the stopping criteria are 

met, which are 

1. The maximum number of iterations has been reached (𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 4000)or 

2. A slight change in the loss function from one iteration to the next (convergence), i.e, 𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑟𝑟𝑜𝑟 <
10−3or 

3. the limit of the convergence iteration (𝑖𝑡𝑒𝑟𝑇ℎ𝑂𝑓𝐶𝐴 = 700) is reached. 

− Model evaluation: 

The best-trained model is validated using stratified K-fold cross-validation, which ensures consistency of 

the class distribution across folds, critical for unbalanced data such as diabetes risk datasets. Final performance 

is evaluated on the test set using accuracy and F1 score metrics. 

Stratified K-fold cross-validation ensures that the model does not overfit and generalizes well to new data. 

Stratified K-fold cross-validation is a variation of k-fold cross-validation in which the data are split so that 

each fold retains the same class proportion as in the original dataset. (Prusty et al., 2022; Raschka, 2018; 

Mahesh et al., 2023).. This is critical for unbalanced datasets such as the Diabetes Risk Prediction dataset. 

3. RESULTS AND DISCUSSION 

The evaluation results of the models on the training subset, which illustrate the performance of each 

algorithm, are presented in Table 2 and Figure 5. These results indicate that the QIFPNN algorithm achieved 

the highest accuracy among the five algorithms tested. 
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Tab. 2. Average 20 runs of classification accuracy per fold in the training subset of diabetes 

Algorithm 
Fold 

Mean 
1 2 3 4 5 6 7 8 9 10 

QIFPNN 

(%) 

Min 88.39 99.29 95.25 98.10 95.25 94.77 98.10 95.72 97.39 98.34 96.06 

Max 100.00 100.00 100.00 100.00 100.00 99.76 100.00 100.00 100.00 100.00 99.98 

Ave 97.89 99.64 98.78 99.63 98.19 98.92 99.25 98.44 99.37 99.35 98.95 

FPNN 

(%) 

Min 95.50 87.89 93.82 90.50 90.74 83.37 91.92 92.87 95.49 93.13 91.52 

Max 99.05 99.05 99.29 99.05 99.05 99.29 98.57 99.29 99.29 98.82 99.07 

Ave 97.59 97.35 97.79 97.15 97.05 96.41 96.65 97.03 97.60 97.68 97.23 

BANN 

(%) 

Min 95.73 84.56 82.42 74.58 95.72 87.65 89.55 89.31 97.39 93.36 89.03 

Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Ave 98.93 98.80 97.83 98.29 97.96 98.36 98.28 97.39 99.37 98.12 98.33 

PSONN (%) 

Min 79.15 78.15 75.77 71.50 76.72 81.00 77.67 75.06 70.31 82.23 76.76 

Max 93.36 97.15 94.30 94.30 93.59 96.44 94.06 93.11 95.25 94.31 94.59 

Ave 88.36 88.00 85.49 87.36 86.86 88.79 87.02 86.59 87.96 87.87 87.43 

SGD 

(%) 

Min 95.97 96.67 95.72 88.36 95.01 93.11 92.40 92.87 96.20 93.36 93.97 

Max 99.05 99.05 99.29 99.05 99.05 98.81 99.29 98.57 99.29 98.82 99.03 

Ave 97.81 98.49 96.94 97.07 97.21 96.96 95.93 95.44 97.78 96.18 96.98 

 

Fig. 5. Average 10-fold classification accuracy of the training subset of diabetes 

FPNN and BANN also showed strong performance, exceeding 97%, while PSONN showed significantly 

lower accuracy than the others. Interestingly, SGD showed competitive performance with an accuracy of 

96.98%, which was slightly lower than QIFPNN, FPNN and BANN, but significantly better than PSONN. 

The evaluation of the training subset showed that QIFPNN excelled in the detection of diabetes with an 

accuracy of 98.95%. This superiority can be attributed to QIFPNN's ability to optimize the training process 

through a more efficient quadratic interpolation mechanism than other algorithms. Although FPNN and BANN 

achieved respectable accuracies (97.23% and 98.33%, respectively), they could not outperform QIFPNN. 

SGD, on the other hand, also showed strong performance with an accuracy of 96.98%, making it a viable 

option due to its simplicity and speed. However, its slightly lower accuracy indicates that its gradient-based 

approach may not capture complex data patterns as effectively as metaheuristic-driven models such as 

QIFPNN. 

In contrast, PSONN had a much lower accuracy (87.43%), likely due to inefficiencies in parameter fitting. 

This limitation can be attributed to the suboptimal population search strategy, which hindered its ability to find 

the best solutions. These results demonstrate that advanced methods, such as QIFPNN, can significantly 

improve recognition accuracy compared to traditional approaches. In addition, the performance of SGD is 

promising, especially in scenarios that require efficient model performance under limited computational 

resources. 

The evaluation results of the models on the validation subset, highlighting the performance of each 

algorithm, are presented in Table 3 and Figure 6. These results show that the QIFPNN algorithm maintained 

its superiority and achieved the highest accuracy on both subsets. Although there was a slight decrease in 
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accuracy on the validation subset compared to the training subset, QIFPNN consistently showed superior 

performance. 

Tab. 3. Average 20 runs of classification accuracy per fold in the validation subset of diabetes 

Algorithm 
Fold Mean 

1 2 3 4 5 6 7 8 9 10  

QIFPNN 

(%) 

Min 97.83 95.74 100.00 95.74 95.74 93.62 97.87 91.49 95.74 95.65 95.94 

Max 100.00 100.00 100.00 100.00 97.87 100.00 100.00 97.87 100.00 100.00 99.57 

Ave 98.26 97.45 100.00 97.77 97.66 96.28 99.79 94.68 97.34 98.37 97.76 

FPNN 

(%) 

Min 97.83 91.49 100.00 95.74 95.74 93.62 97.87 91.49 91.49 95.65 95.09 

Max 100.00 100.00 100.00 100.00 100.00 97.87 100.00 97.87 97.87 100.00 99.36 

Ave 98.48 95.43 100.00 99.36 97.98 95.74 99.47 94.89 94.26 98.15 97.38 

BANN 

(%) 

Min 91.30 91.49 89.36 87.23 93.62 82.98 93.62 82.98 91.49 95.65 89.97 

Max 100.00 100.00 100.00 100.00 97.87 100.00 100.00 97.87 100.00 100.00 99.57 

Ave 96.96 96.70 99.36 95.96 97.45 95.21 98.51 94.15 96.81 98.15 96.93 

PSONN (%) 

Min 84.78 80.85 89.36 87.23 72.34 85.11 82.98 80.85 74.47 80.43 81.84 

Max 100.00 93.62 100.00 97.87 97.87 95.74 97.87 93.62 91.49 97.83 96.59 

Ave 90.76 86.91 95.53 92.34 90.74 90.43 91.70 87.02 83.62 90.65 89.97 

SGD 

(%) 

Min 93.48 91.49 100.00 93.62 97.87 91.49 95.74 91.49 89.36 95.65 94.02 

Max 97.83 95.74 100.00 97.87 97.87 95.74 100.00 93.62 97.87 97.83 97.44 

Ave 95.22 93.62 100.00 95.21 97.87 92.77 97.55 93.30 92.34 97.72 95.56 

 

The accuracy results on the validation subset further confirm previous findings that QIFPNN is a practical 

algorithm for diabetes detection. With an accuracy of 97.76%, QIFPNN demonstrated strong generalization 

capabilities, despite a slight drop from its accuracy on the training subset. FPNN and BANN also showed 

competitive performance, with accuracies of 97.38% and 96.93%, respectively. The slight differences among 

these results suggest that all three algorithms (QIFPNN, FPNN, and BANN) can effectively detect diabetes; 

however, QIFPNN has a slight advantage in terms of stability and generalization ability. 

 

Fig. 6. Average 10-fold classification accuracy of the validation subset of diabetes 

SGD, a conventional gradient-based optimization method, achieved a validation accuracy of 95.56%. 

Although its performance was lower than that of QIFPNN, FPNN, and BANN, it still demonstrated reasonable 

generalization. However, the performance gap suggests that SGD may be less able to capture complex patterns 

in the diabetes dataset compared to population-based algorithms. This difference may be due to the limited 

exploration capacity of SGD, which relies heavily on gradient direction and may converge prematurely on 

suboptimal solutions. 

Although PSONN showed an improvement on the validation subset with an accuracy of 89.97%, it still fell 

significantly behind the other four algorithms. This indicates that PSONN needs further optimization or 

parameter tuning to improve its performance in this context. Overall, the accuracy results on the validation 

subset indicate that QIFPNN excels during training and maintains its superior performance when tested on 
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previously unseen data. At the same time, SGD provides a good starting point and performs better than 

PSONN, although it lags behind the other metaheuristic-based methods. 

The evaluation results of the models on the test subset, which illustrate the performance of each algorithm, 

are shown in Table 4 and Figure 7. These results show that QIFPNN consistently demonstrated strong 

performance, achieving the highest accuracy on the training and validation subsets, and competitive accuracy 

on the test subset. 

Tab. 4. Average 20 runs of classification accuracy per fold in the test subset of diabetes 

Algorithm 
Fold 

Mean 
1 2 3 4 5 6 7 8 9 10 

QIFPNN 

(%) 

Min 92.31 92.31 94.23 94.23 94.23 90.38 94.23 94.23 94.23 96.15 93.65 

Max 98.08 98.08 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.62 

Ave 96.25 95.96 97.40 96.92 97.88 96.15 97.50 97.50 96.44 97.79 96.98 

FPNN 

(%) 

Min 96.15 90.38 92.31 94.23 92.31 90.38 94.23 92.31 96.15 94.23 93.27 

Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Ave 98.17 97.21 97.88 97.31 96.73 96.92 96.92 97.60 97.50 97.98 97.42 

BANN 

(%) 

Min 94.23 88.46 90.38 75.00 94.23 75.00 92.31 90.38 92.31 94.23 88.65 

Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Ave 98.37 96.44 97.31 95.58 98.37 95.19 97.31 97.50 96.54 97.79 97.04 

PSONN (%) 

Min 76.92 76.92 75.00 69.23 75.00 82.69 78.85 78.85 75.00 80.77 76.92 

Max 96.15 98.08 98.08 98.08 98.08 98.08 96.15 98.08 96.15 98.08 97.50 

Ave 90.58 89.81 90.29 90.38 89.71 92.12 89.81 90.58 89.81 90.67 90.38 

SGD 

(%) 

Min 98.08 96.15 96.15 96.15 96.15 94.23 96.15 98.08 96.15 96.15 96.35 

Max 100.00 100.00 100.00 100.00 100.00 98.08 100.00 100.00 100.00 100.00 99.81 

Ave 98.56 97.98 97.69 98.65 97.88 97.31 98.08 98.17 98.27 98.08 98.07 

 

Fig. 7. Average 10-fold classification accuracy of the test subset of diabetes 

The accuracy results on the test subset show that QIFPNN achieved an accuracy of 96.98%. Although this 

represents a slight decrease from its performance on the training and validation subsets, it still demonstrates a 

strong ability to detect diabetes on unseen data. Interestingly, FPNN recorded the highest accuracy on the test 

subset at 97.42%, suggesting that while QIFPNN excelled during training and validation, FPNN showed 

slightly better adaptability to the test data. BANN also showed stable performance with an accuracy of 97.04%, 

reinforcing the finding that all three algorithms (QIFPNN, FPNN, and BANN) are generally reliable for 

practical applications. 

The SGD algorithm, which is a conventional gradient-based training method, achieved an accuracy of 

98.07% on the test subset, the highest among all methods. This result indicates that SGD, despite its relatively 

simple optimization mechanism compared to evolutionary-based methods, can perform remarkably well in 

generalization when properly configured. Its performance on the test data suggests that SGD was less prone to 

overfitting than some population-based methods, possibly due to its more deterministic gradient descent 

approach and efficient convergence. 
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PSONN continued to lag behind the other four algorithms with an accuracy of 90.38%. Despite an 

improvement from its validation results, PSONN's performance highlights the need for further optimization of 

its architecture and parameter tuning. 

Overall, the accuracy results on the test subset confirm that QIFPNN excels in training and validation and 

maintains strong performance in the final test phase. However, the superior accuracy of SGD on this subset 

suggests that it is a highly effective baseline algorithm that should not be overlooked. While FPNN showed an 

advantage over QIFPNN at this stage, BANN showed stability, including SGD, which introduces a competitive 

alternative with exceptional generalization ability. 

The evaluation results, which present the average classification accuracy across the three subsets (training, 

validation, and testing) and reflect the performance of each algorithm, are shown in Table 5. These results 

show that QIFPNN outperformed other algorithms on the training and validation subsets and achieved the 

highest average accuracy on all three subsets. 

Tab. 5. Recapitulation of mean classification accuracy of the training, validation, and test subsets for the ten folds of diabetes 

Algorithm 
Average accuracy of 

training subset (%) 

Average accuracy of 

validation subset (%) 

Average accuracy 

of test subset (%) 

Mean accuracy of 

training, validation, and 

test subsets (%) 

QIFPNN 98.95 97.76 96.98 97.90 

FPNN 97.23 97.38 97.42 97.34 

BANN 98.33 96.93 97.04 97.43 

PSONN 87.43 89.97 90.38 89.26 

SGD 96.98 95.56 98.07 96.87 

 

The average accuracy across the three subsets provides a clear overview of the overall performance of each 

algorithm. QIFPNN achieved an average accuracy of 97.90%, demonstrating consistent performance across 

all evaluation levels. This indicates that QIFPNN can effectively generalize its results based on new data, 

making it an excellent choice for diabetes detection. FPNN and BANN also showed solid performance, with 

average accuracies of 97.34% and 97.43%, respectively. Although slightly lower than QIFPNN, these three 

algorithms proved their strong ability to detect diabetes. 

The SGD algorithm, a gradient-based optimizer, demonstrated competitive performance with an average 

accuracy of 96.87% across the three subsets (training: 96.98%, validation: 95.56%, testing: 98.07%). While 

its average accuracy is slightly lower than QIFPNN, FPNN, and BANN, SGD showed remarkably high test 

accuracy, surpassing both QIFPNN and BANN. This suggests that SGD has strong adaptability to unseen data 

and can perform well in various practical applications. 

While PSONN shows improvement with an average accuracy of 89.26%, it still lags significantly behind 

the other algorithms. This limitation highlights the need for further development and optimization of this model 

to compete with the performance of QIFPNN, FPNN, BANN, and even SGD. Overall, these results support 

the conclusion that QIFPNN, FPNN and BANN are effective methods for diabetes detection, with SGD 

emerging as a promising alternative due to its balance of performance and efficiency, and QIFPNN being the 

most consistent performer overall. 

The evaluation results based on the F1 score metric across the three subsets (training, validation, and 

testing), which reflect the performance of each algorithm, are presented in Table 6 and Figure 8 through Figure 

10. These results show that QIFPNN also achieved the highest F1 score on the training subset. 

Tab. 6. Recapitulation of mean F1-score of the training, validation, and test subsets for the ten folds of diabetes 

Algorithm 
Average F1-score of 

training subset (%) 

Average F1-score of 

validation subset (%) 

Average F1-score 

of test subset (%) 

Mean F1-score of training, 

validation, and test subsets (%) 

QIFPNN 99.14 98.17 97.57 98.30 

FPNN 97.75 97.87 97.90 97.84 

BANN 98.64 97.47 97.63 97.91 

PSONN 89.95 91.95 92.44 91.45 

SGD 97.52 96.33 98.40 97.42 

 

The F1 score results on the training subset show that QIFPNN excels in accuracy and achieves a balance 

between precision and recall, with an F1 score of 99.14%. This figure reflects QIFPNN's exceptional ability 
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to detect positive diabetes cases, indicating a low error rate in both positive and negative predictions. FPNN 

and BANN also demonstrated strong F1 scores of 97.75% and 98.64%, respectively. These performances 

indicate that both algorithms effectively detect diabetes, although they do not outperform QIFPNN. PSONN, 

with an F1 score of 89.95%, shows significant room for improvement, particularly in minimizing false 

positives and negatives. 

When SGD was included in the training process, the F1 score for SGD on the training subset reached 

97.52%, which, although lower than QIFPNN, is still highly competitive. This indicates that SGD can 

effectively balance precision and recall, although not as efficiently as QIFPNN or BANN. The lower F1 score 

observed in SGD compared to QIFPNN suggests that the gradient-based approach may face challenges in 

capturing the complexity of the diabetes dataset, especially when compared to metaheuristic-based models 

such as QIFPNN. Nevertheless, the performance of SGD remains remarkable, as it shows good predictive 

results, making it a viable option for diabetes detection. 

The high F1 scores achieved by QIFPNN and BANN highlight their ability to provide more accurate 

predictions in the context of diabetes detection. SGD, although slightly behind, offers a robust alternative with 

its ability to provide efficient and stable training results. It emphasizes the importance of relying on accuracy 

and F1 score metrics to get a complete picture of model performance. 

 

Fig. 8. Average 10-fold F1-score of the training subset of diabetes 

The F1 score results on the validation subset show that QIFPNN maintains its strong performance with an 

F1 score of 98.17%. This score demonstrates QIFPNN's ability to achieve a balanced trade-off between 

precision and recall, highlighting its effectiveness in detecting positive diabetes cases. FPNN and BANN also 

achieved impressive F1 scores of 97.87% and 97.47%, respectively, suggesting that these algorithms are 

similarly practical in the validation context, although QIFPNN retains its superior edge. 

SGD, although a more traditional optimization method, demonstrated competitive performance with an F1 

score of 96.33%. Although it lags slightly behind QIFPNN, FPNN, and BANN, this result underscores SGD's 

strong ability to produce stable predictions. Its F1 score shows that SGD can reasonably balance precision and 

recall, especially in the context of unseen data. Although SGD was not as effective as QIFPNN, it performed 

well enough to provide a solid baseline and demonstrated greater adaptability to real-world applications. 

PSONN, with an F1 score of 91.95%, shows a significant improvement over its performance on the training 

subset, but still has room for further optimization. This result indicates that PSONN can adapt reasonably well 

to unseen data, but needs improvements to match the performance of the other models. 

Overall, the F1 score results on the validation subset underscore the reliability of QIFPNN, FPNN and 

BANN in diabetes detection, with QIFPNN remaining the most robust model. The inclusion of SGD provides 

a practical alternative and shows that competitive results can still be achieved using a traditional optimization 

technique, especially for applications requiring faster training times and lower computational costs. 
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Fig. 9. Average 10-fold F1-score of the validation subset of diabetes 

The F1 score results on the test subset show that QIFPNN has maintained its excellent performance with 

an F1 score of 97.57%. This indicates that QIFPNN continues to effectively balance precision and recall in the 

detection of diabetes on unseen data. FPNN and BANN also achieved satisfactory results, with F1 scores of 

97.90% and 97.63%, respectively. These results confirm that both algorithms are practical and can perform 

well on unknown data. 

SGD outperforms QIFPNN, FPNN, and BANN on the test subset with an F1 score of 98.40%. It 

demonstrates that SGD, despite its more traditional gradient-based approach, can achieve competitive 

performance in generalizing to unseen data. The improvement in SGD's F1 score highlights its efficiency in 

fine-tuning model parameters and ensuring a balance between precision and recall. Although slightly lower in 

training and validation, SGD's strong performance on the test subset suggests that it can effectively handle the 

variability inherent in real-world data, making it a highly valuable option for use in practical applications. 

PSONN, with an F1 score of 92.44%, shows an improvement over the previous subsets, although it still 

lags behind the performance of the other models. This score suggests that while PSONN can identify the most 

favorable cases, there is potential for further improvement in accuracy and prediction balance. 

Overall, the F1 score results across the three subsets emphasize the reliability of QIFPNN, FPNN and 

BANN in diabetes detection. SGD, with its impressive performance on the test subset, emerges as a strong 

competitor offering a balance between accuracy and adaptability. QIFPNN consistently shows the most 

substantial performance across all subsets, making it the leading model in this context. However, SGD's 

performance suggests that it could be a viable alternative, especially in practical applications where 

adaptability to diverse data is critical. 

 

Fig. 10. Average 10-fold F1-score of the test subset of diabetes 
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The average F1 score results show that QIFPNN achieves the best performance with an average score of 

98.30%. This suggests that QIFPNN excels in accuracy and maintains an excellent balance between precision 

and recall across all subsets. This ability is critical in the context of diabetes detection, where minimizing both 

false positives and false negatives is essential for accurate diagnosis. FPNN and BANN also show excellent 

average F1 scores of 97.84% and 97.91%, respectively. These two algorithms also maintain strong 

performance in diabetes detection, making them viable alternatives in this field. PSONN, with an average F1 

score of 91.45%, shows a significant improvement compared to its performance in other subsets, but still needs 

further development to reach performance levels comparable to the other models. 

SGD, with an average F1 score of 98.40%, proved to be a competitive model. Despite its traditional 

gradient-based optimization approach, SGD maintains a high level of performance and achieves an impressive 

balance between precision and recall, slightly outperforming QIFPNN in the test subset. This result indicates 

that SGD can handle the complexity of diabetes detection while offering strong adaptability, making it a viable 

option for real-world applications. 

Overall, the average F1 scores across the three subsets support the conclusion that QIFPNN is the most 

effective model for diabetes detection, followed by FPNN and BANN. However, the addition of SGD shows 

that traditional methods still have competitive value, offering a balance between performance and speed. 

PSONN, while showing progress, still requires additional research to improve its capabilities. These results 

underscore the importance of selecting the appropriate algorithm for developing effective diabetes detection 

systems, with QIFPNN and SGD emerging as top contenders based on their performance and adaptability 

across all evaluation stages. 

Paired samples t-tests were performed on the training, validation, and test subsets to determine whether the 

observed differences in F1 scores between QIFPNN and other algorithms were statistically significant. A 

summary of the results is shown in Table 7. 

Tab. 7. Paired T-Test results for F1-score (QIFPNN vs other algorithms) 

Subset Comparison Mean Diff t(df) p-value Significance 

Training QIFPNN vs FPNN 1.395 7.060 0.000 Yes 

 QIFPNN vs BANN 0.497 2.726 0.023 Yes 

 QIFPNN vs PSONN 9.194 34.514 0.000 Yes 

 QIFPNN vs SGD 1.624 5.868 0.000 Yes 

Validation QIFPNN vs FPNN 0.302 0.917 0.383 No 

 QIFPNN vs BANN 0.707 5.238 0.001 Yes 

 QIFPNN vs PSONN 6.224 8.896 0.000 Yes 

 QIFPNN vs SGD 1.839 4.110 0.003 Yes 

Testing QIFPNN vs FPNN −0.327 −1.457 0.179 No 

 QIFPNN vs BANN −0.054 −0.238 0.817 No 

 QIFPNN vs PSONN 5.132 18.246 0.000 Yes 

 QIFPNN vs SGD −0.827 −3.925 0.003 Yes 

 

The t-test results on the training subset show that QIFPNN significantly outperforms the other algorithms. 

Comparisons between QIFPNN and FPNN, QIFPNN and BANN, QIFPNN and PSONN, and QIFPNN and 

SGD all yield p-values less than 0.05, indicating significant differences in performance. Specifically, QIFPNN 

achieved an F1 score of 99.14%, far exceeding FPNN (97.75%), BANN (98.64%), PSONN (89.95%), and 

SGD (97.52%). It shows that QIFPNN is the most effective algorithm for detecting diabetes on the training 

data, with the highest ability to minimize errors in both positive and negative predictions (false positives and 

false negatives). 

On the validation subset, t-test results again show significant differences between QIFPNN, BANN, and 

PSONN, with p-values less than 0.05. QIFPNN achieved an F1 score of 98.17%, slightly better than BANN 

(97.47%) and PSONN (91.95%). However, when compared to FPNN, the p-value is not significant (p-value 

= 0.383), indicating that FPNN (97.87%) performed similarly to QIFPNN on the validation subset. However, 

QIFPNN retains a slight advantage by demonstrating better generalization capabilities on unseen data. This 

highlights QIFPNN as a more stable and effective model for diabetes detection in practical scenarios. 

The test subset T-test results show no significant difference between QIFPNN and FPNN or BANN (p-

values = 0.179 and 0.817, respectively), indicating comparable performance between QIFPNN and both 
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algorithms on the test data. However, comparisons with PSONN and SGD show significant differences (p-

values = 0.000 and 0.003, respectively), with QIFPNN outperforming both. QIFPNN achieved an F1 score of 

97.57%, while FPNN (97.90%) and BANN (97.63%) showed similar performance, slightly outperforming 

QIFPNN in the test subset. In contrast, PSONN (92.44%) showed lower performance, highlighting the need 

for further model optimization. Although SGD (98.40%) showed slightly better F1 score performance, 

QIFPNN results remain competitive and highly reliable on unseen data. 

Overall, the T-test analysis shows that QIFPNN excels in diabetes detection across all subsets (training, 

validation, and testing). While FPNN and BANN showed strong performance, QIFPNN consistently provided 

the highest accuracy and F1 scores, especially in the training and validation subsets, with significant 

performance differences in most comparisons. PSONN showed lower performance in all subsets, indicating a 

need for further optimization. Although SGD showed slightly better F1 score results in the test subset, QIFPNN 

performed excellently in all evaluation phases. These results underscore the importance of selecting QIFPNN 

as the most reliable model for diabetes detection, with FPNN and BANN as competitive alternatives. PSONN 

and SGD need further development to reach the same level of performance. 

In addition to classification performance, we also evaluated the training efficiency of each algorithm by 

measuring its average learning time (see Table 8). This metric provides insight into the computational cost 

required to train each model. The results showed that SGD achieved the shortest training time with an average 

of 584.50 seconds, demonstrating its computational efficiency. PSONN followed with a training time of 

1812.10 seconds, then BANN with 2906.70 seconds, and FPNN with 3135.92 seconds. While QIFPNN 

achieved the best average accuracy (97.90%) and F1 score (98.30%), it required the longest training time of 

4107.89 seconds. These results highlight a trade-off between predictive performance and computational 

efficiency, where QIFPNN excels in accuracy but requires more resources and time during the training phase. 

This consideration is important for use in time-constrained or resource-limited environments. 

Tab. 8. Training time 

Algorithm Training time (seconds) 

QIFPNN 4107.89 

FPNN 3135.92 

BANN 2906.70 

PSONN 1812.10 

SGD 584.50 

 

The evaluation results show that the QIFPNN algorithm consistently outperforms the accuracy and F1-

score of other models across all subsets. With the highest accuracy in the training subset (98.95%) and an 

average F1 score of 98.30%, QIFPNN demonstrates exceptional ability to detect diabetes. The ability of this 

model to maintain high performance across all subsets reflects its stability and excellent generalization to new 

data. T-test results confirm that QIFPNN significantly outperforms other models, especially when compared 

to PSONN and SGD, which show significant performance gaps. Despite QIFPNN's higher computational cost 

during training, its superior predictive accuracy makes it the leading model for diabetes detection. 

FPNN and BANN also show impressive performance, especially on the validation and testing subsets, with 

accuracy and F1 scores approaching those of QIFPNN. FPNN achieved the highest F1 score on the test subset 

(97.90%), while BANN showed a competitive F1 score of 97.63%. The T-test results also show significant 

differences between QIFPNN and these two models, further highlighting QIFPNN's superior performance at 

all levels. However, despite slightly lower performance, FPNN and BANN remain solid choices for diabetes 

detection. 

On the other hand, PSONN showed lower performance than the other models, with an average accuracy of 

89.26% and an average F1 score of 91.45%. The t-test results indicate significant performance differences 

between PSONN, QIFPNN, and FPNN. While PSONN improved the test subset, it still lags behind in 

comparison. The training time analysis further highlights that PSONN is less computationally efficient than 

the other models, taking significantly more time than SGD but less than QIFPNN. Despite performance 

improvements, PSONN still needs further optimization in architecture and parameter tuning to compete with 

the other proven algorithms. 

In addition, SGD stands out for its training efficiency, completing the training process in only 584.50 

seconds, the fastest among all models. While SGD achieved a competitive accuracy of 96.87% and an F1 score 

of 97.42% on the test subset, it does not outperform QIFPNN, FPNN, or BANN in terms of prediction accuracy 
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or F1 score. Nevertheless, SGD offers a good balance between training time and model performance, making 

it a suitable candidate when computational efficiency is critical. 

These results emphasize the importance of selecting the appropriate algorithm based on accuracy and 

computational efficiency. While QIFPNN shows significant superiority in predictive performance, FPNN and 

BANN are viable choices. For scenarios where training time is a significant constraint, SGD offers a reasonable 

trade-off between performance and computational resources. 

4. CONCLUSIONS 

This study successfully implemented and compared four algorithms for diabetes detection, namely 

QIFPNN, FPNN, BANN, and PSONN. The evaluation results showed that QIFPNN is the superior algorithm 

with an average accuracy of 97.90% and an average F1 score of 98.30%. These two metrics indicate the ability 

of QIFPNN to accurately and efficiently detect diabetes. T-test results confirm that QIFPNN performs 

significantly better than the other models, especially compared to PSONN, SGD and FPNN in several subsets. 

In addition, QIFPNN achieved the highest accuracy and F1 score across the three subsets, demonstrating its 

strong ability to generalize to new data. 

FPNN and BANN also performed well, with average accuracies of 97.34% and 97.43%, respectively, and 

average F1 scores close to QIFPNN. Although these models did not outperform QIFPNN, the t-test results 

showed that FPNN and BANN were competitive with each other and could be viable alternatives for diabetes 

detection. FPNN recorded the highest F1 score of 97.90% on the test subset, confirming its effectiveness. 

However, training time analysis showed that QIFPNN required significantly more time (4107.89 seconds) 

compared to FPNN (3135.92 seconds) and BANN (2906.70 seconds). This trade-off between computational 

efficiency and predictive accuracy should be considered when deploying models in resource-constrained 

environments. 

PSONN, while showing lower results with an average accuracy of 89.26% and an average F1 score of 

91.45%, still contributes to the analysis of model performance. The t-test results highlighted the significant 

differences between PSONN, QIFPNN and FPNN. Despite some improvements in the test subset, PSONN 

requires further optimization in model architecture and parameter tuning. In addition, PSONN was more 

computationally expensive than SGD and took longer to train (1812.10 seconds). These results emphasize the 

need for future research to optimize PSONN and improve its performance. 

On the other hand, although SGD showed competitive performance with an accuracy of 96.87% and an F1 

score of 97.42% on the test subset, it was significantly faster in training (584.50 seconds). Although it did not 

outperform QIFPNN or FPNN in accuracy or F1 score, SGD offers a promising trade-off between training 

efficiency and performance. The t-test analysis showed that SGD is computationally efficient and may be a 

suitable option when computational resources or time constraints are critical. 

Overall, the results of this study support the idea that QIFPNN can be relied upon as an effective diabetes 

detection model, providing the highest performance in terms of accuracy and F1 score. However, the trade-off 

between performance and computational cost, especially for QIFPNN, should be carefully considered for use 

in time-critical applications. Although the training time of QIFPNN is higher due to its sophisticated 

optimization process, this is only a concern during model development, as the final trained model can be 

efficiently used for real-time prediction in practical applications. The performance of FPNN, BANN, and SGD 

also highlights the strengths of different algorithms and provides options for different levels of performance 

and computational efficiency in diabetes detection. These results emphasize the importance of selecting the 

most appropriate model based on the specific needs of the application, taking into account both performance 

and computational efficiency. 

Based on the results obtained, several suggestions that could be considered for future research are (1) 

Optimization of PSONN: Although PSONN showed lower performance, efforts can be made to optimize the 

parameters and architecture of the model to improve its accuracy. Techniques such as hyperparameter tuning 

and the addition of layers or neurons could be explored; (2) Larger dataset: Using a larger and more diverse 

dataset can help evaluate the robustness of the model and its ability to generalize to a larger population; (3) 

Further studies: Conducting further studies that examine other factors that may affect outcomes, such as 

demographic and clinical variables, to enrich the understanding of diabetes detection using these algorithms. 

With these steps, it is expected that significant improvements in diabetes detection and management can be 

achieved, contributing to overall public health. 
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