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Enhanced IoT cybersecurity  

through machine learning - based penetration testing 

Abstract 

The Internet of Things (IoT) is a new technology that builds on the old Internet. A network connects all 

objects using technologies such as Radio Frequency Identification (RFID), sensors, GPS, or Machine-to-

Machine (M2M) communication. The development of IoT has been negatively impacted by security 

concerns, which has led to a significant increase in research interest. However, very few methods look at 

the security of IoT from the attacker's point of view. As of today, penetration testing is a common way to 

check the security of traditional internet or systems. It usually takes a lot of time and money. In this paper, 

we look at the security problems of the Internet of Things (IoT) and suggest a way to test for them. This 

way is based on a combination of the belief-desire intention (BDI) model and machine learning. The results 

of the experiments showed that they were very good at detecting and defending against cyberattacks on IoT 

devices. The proposed BDI-based recall method provided 85% of the results. The 90% precision suggests 

that the measurements are very accurate. The F1-score was 87.4%, and the accuracy was 95%. The 

proposed BDI is of exceptional quality in every part of the penetration-testing model.  Therefore, it is 

possible to create a system that can detect and defend against cyberattacks based on the proposed BDI 

model. 

1. INTRODUCTION 

The Internet of Things (IoT) was a big deal when it came out in 1999. MIT came up with the idea, and it's 

been a huge part of the next generation of information technology ever since (Yalli et al., 2024). The "Internet 

of Things" is like an expansion of the original Internet. It links physical objects to the web so that they can 

transfer data, identify things, find locations, track things, monitor things, and manage them. It uses technologies 

like Machine to Machine (M2M) communication, Radio Frequency Identification (RFID), and sensors 

(Mphale et al., 2024; Santos et al., 2014). As the current literature says, the application, network, and 

perception layers make up the framework of the Internet of Things (IoT), as shown in Figure 1 (Gokhale et al., 

2018). Users get a bunch of different services from the application layer in all sorts of situations. Data 

processing and transmission happen at the network layer. At the end of the day, it's the perception layer's job 

to gather data and identify physical things using various hardware terminals like RFID, sensors, GPS, and 

more. Smart grids, intelligent traffic, smart cities, smart homes, intelligent healthcare, physical activity, and 

smart buildings are just a few of the current areas that have made use of IoT technology. But security has been 

a big worry because of the growing number of attacks (Abu-Ein et al., 2025; Al-Hazaimeh et al., 2022; Cao et 

al., 2022; Tahat et al., 2020). 

 

https://orcid.org/0000-0002-9697-5157
https://orcid.org/0000-0001-5641-4892
https://orcid.org/0000-0002-5231-8155
https://orcid.org/0000-0002-6347-7821
https://orcid.org/0000-0001-8562-7256


97 

  

Fig. 1. Architecture of IoT layers 

Penetration testing is a prevalent method that emulates authentic attacks to evaluate the security of 

traditional Internet or systems (Hu et al., 2020). Penetration testing execution standard (PTES) (Safitra et al., 

2023) defines penetration testing as a process that includes pre-engagement interaction, The process of data 

collection, threat modeling, vulnerability analysis, exploitation, post-exploitation, and reporting is of 

paramount importance in this field. The distinction between an "attacker" and a "penetration tester" is primarily 

a matter of legal interpretation. Penetration testing is a method of assessing the security of a system against 

unauthorized access or destruction. It does not, however, impact the availability of the system under test. In 

the 1970s, the U.S. military discovered vulnerabilities through penetration testing and subsequently hired 

hackers to attack mirror targets. This enabled software engineers to reinforce computer networks. Penetration 

testing is a highly effective method for enhancing the security of a target system. A considerable number of 

firms and organizations are implementing this strategy for the purpose of detecting and addressing system 

vulnerabilities, thereby preventing future harm (Abu-Dabaseh & Alshammari, 2018). The prevailing focus of 

IoT security research is on the analysis, defense, or attack of particular devices. The security of the Internet of 

Things (IoT) is becoming increasingly critical. However, there is a paucity of comprehensive options that are 

focused on the capabilities of attackers. Despite the extensive research conducted on threat modeling, 

vulnerability assessment, and intrusion detection, few have systematically employed the attacker's perspective 

to assess IoT security across the attack surface (Bella et al., 2023). Penetration testing is a prevalent practice, 

but it can be costly and time-consuming (Ujjwal & Chodorowski, 2019). Automation has the potential to 

enhance the efficiency of penetration testing significantly. In this research, we explore issues related to IoT 

security and privacy, and we offer a methodology for penetration testing that is based on a combination of the 

Belief-Desire Intention (BDI) model and machine learning. The subsequent sections of the paper are structured 

as follows: In Section 2, an analysis of the security challenges associated with the Internet of Things (IoT) is 

conducted. In Section 3, a pertinent literature review is presented. The fourth section of this text delineates the 

recommended technique. In Section 5, we validate the automation of penetration testing for IoT through a 

simulated experiment. The ensuing discourse and prospective endeavors are delineated in Section 6 and 

culminate in Section 7. 

2. THE SECURITY CHALLENGES OF IOT 

The security of Internet of Things devices has emerged as a topic of significant interest in the twenty-first 

century. While the Internet of Things brings everything closer together and connects the entire globe, it also 

creates countless points of access that can be exploited by a variety of different types of attacks. Although the 

Internet of Things (IoT) is a very short phrase, it encompasses the entire world with all of its smart technologies 

and services (Shaukat et al., 2021). The Internet of Things connects the real and virtual worlds using intelligent 

devices and associated services over various communication protocols.  
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Fig. 2. Users of IoT devices by 2024 – estimated 

The Internet of Things is turning a 25-year-old fantasy into reality. Intelligent technology, especially the 

Internet of Things, permeates today's society. People are unable to think autonomously without Internet of 

Things devices and services. One survey predicts that 50 billion devices will be online by 2020, and that 

number will continue to grow (Tawalbeh et al., 2020). Figure 2 shows the expected usage of IoT devices in 

2020 (Prince et al., 2024). The Internet of Things industry is expected to reach $3,911.1 trillion by 2025. Figure 

3 shows the global IoT market, the number of connected devices, and projections through 2030 (Al-Sarawi et 

al., 2020). For example, electrical and computer engineering researchers have focused on the Internet of 

Things, its development, and security over the past few decades. 

 

Fig. 3. Worldwide IoT device connectivity and forecast 

Through a variety of applications, Internet of Things devices become more accessible when they are 

connected to the Internet (Zeinab & Elmustafa, 2017). Although the Internet of Things (IoT) makes life more 

technologically advanced, convenient, and adaptable, it also exposes users' privacy to a variety of risks and 

attacks. When it comes to the Internet of Things (IoT), security is a major concern because anyone can access 

it without authorization. Protecting IoT devices requires a variety of different security techniques. 

14%

54%

32%

Automotive Consumer Business
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Internet of Things (IoT) devices present significant security vulnerabilities due to their pervasive nature, 

limited resource availability, and diverse communication protocols. The confidentiality, integrity, and 

availability of data and services are all threatened by these vulnerabilities, making Internet of Things (IoT) 

systems susceptible to both passive and active attacks (Shaikh et al., 2018). An illustration of the Internet of 

Things attacks is shown in Figure 4 (Bout et al, 2022). 

 

Fig. 4. Attacks of the IoT 

To clarify, there are different types of cyber risks relevant to IoT security that one needs to be aware of in 

the field of cybersecurity today. Basically, there are two categories of threats: active and passive attacks. An 

active attack is one in which the perpetrators directly compromise your computer systems. They can cause a 

variety of problems, including file corruption, data theft, and others. A passive attack is one in which the 

attackers discreetly observe and gather information without the victim's knowledge (Song et al., 2020). A 

compilation of several types of active and passive attacks, along with their impact in the IoT environment, is 

described in table 1 (Bout et al., 2022; Song et al., 2020). 

Tab. 1. Various active and passive attacks and their effects 

Attack type Attacks affectation Cybersecurity attacks 

Active 

Identification 
Sybil attack 

Spoofing attack 

Authorization 
Hole attack 

Jamming attack 

Accessibility 
DoS attack 

MITM attack 

Confidentiality 
Selective forwarding 

Data tampering attack 

Integrity 
Malicious inputs attack 

DDoS attack 

Passive Privacy 
Eavesdropping attack 

Traffic analysis attack 

 

As mentioned in the introduction, the Internet of Things architecture has three layers, as shown in Figure 

1. The vulnerability of each layer to attack represents the main security risk in different Internet of Things 

scenarios. Table 2 summarizes the architecture of the Internet of Things layers and the associated attacks within 

each layer (Al-Hazaimeh & Al-Smadi, 2019; Song et al., 2020). 
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Tab. 2. IoT architecture layers and related attacks 

Layer Layer description Cybersecurity attacks 

Application 

The application layer provides many services to users, 

including smart grid, transportation, city, home, healthcare, 

and building. It is possible to access and manage the IoT 

using numerous applications on platforms such as computers, 

mobile devices, and smart hardware (Swamy et al., 2017). 

Buffer overflow, SQL injection, 

XSS, password attacks, and social 

engineering attacks 

Network 

Between the application layer and the perception layer, the 

network layer transmits information. Various networks, 

including the Internet, cellular networks, satellite networks, 

GSM, GPRS, WIFI, 3G, 4G, and so on, make up the network 

layer (Bello et al., 2017). 

Sniffing attack, signal 

interference attack, data replay 

attack, data tampering attack, and 

DDOS attack. 

Perception 

Using sensors, GPS, RFID, and other hardware devices, the 

sensing or physical layer collects data from the physical 

world and converts it to digital form. Typically, nodes in the 

perception layer are lightweight, have low power, limited 

processing capacity, limited storage, and are unattended. 

Typical information security practices are not employed at 

the perception layer (Ali Khattak et al, 2019). 

Skimming attack, eavesdropping 

attack, spoofing attack, shielding, 

jamming, killing and cloning 

attacks. 

3. RELATED LITERATURE 

Numerous studies have been conducted in the past to examine IoT security and privacy issues. References 

(Kumar & Patel, 2014) examines security vulnerabilities in various IoT applications, while in (Lin & 

Bergmann, 2016) evaluates smart home security. In addition, recent studies on potential vulnerabilities within 

the IoT ecosystem are analyzed in (Borgohain et al., 2015; Lin et al., 2017; Al-Nawashi et al., 2024; 2025). In 

addition, new investigations into privacy and protection from the perspective of technology and protocols have 

attracted considerable interest (Al-Hazaimeh et al., 2014; Shaqboua et al., 2022; Yang et al., 2017). All of 

these studies primarily address security concerns and solutions. Table 3 provides a summary of selected articles 

in each area that address privacy and protection in an Internet of Things (IoT) context from a technology and 

protocol perspective. 

4. METHODOLOGY 

The rapid growth of IoT devices has transformed healthcare, smart homes, and industrial automation. The 

low computing resources, lack of defined security standards, and complicated network designs of IoT systems 

make them vulnerable to hackers. To address these vulnerabilities, penetration testing is critical to security 

assessments of the IoT ecosystem. By simulating real-world attacks, penetration testing identifies 

vulnerabilities in IoT devices and networks, enabling proactive threat mitigation. In this paper, we propose the 

use of the Belief-Desire-Intention (BDI) paradigm to improve IoT penetration testing. The BDI framework 

organizes penetration testing decision making to respond to changing threats and system states. As shown in 

Figure 5, the proposed BDI block diagram illustrates how belief updates (system knowledge), desires (security 

goals), and intentions interact. This platform improves vulnerability detection, automates, and intelligently 

responds to threats. The proposed BDI-based approach improves penetration testing and protects IoT systems 

from passive and active threats. Addressing IoT security issues with this technology is a major advancement. 

To clarify the flowchart design in Figure 5, we divided its implementation into six critical components for IoT 

security: data collection, human knowledge database, machine learning, beliefs, desires, and intentions. Each 

component is implemented in Python to show how it interacts with the Belief-Desire-Intention (BDI) 

architecture (see Algorithm 1  -  6 respectively). This method provides a systematic description of how IoT 

systems can detect anomalies, assess risks, and make informed decisions to improve security. By combining 

these components, we aim to increase the transparency and effectiveness of IoT security systems, enabling 

proactive detection and mitigation of possible cyber threats. 
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Fig. 5. Flow chart diagram – Proposed BDI – model 

More specifically, the human knowledge base consists of a collection of domain-specific inference rules 

that mimic the thinking of experts in the process of identifying actions that are either abnormal or potentially 

harmful in Internet of Things environments. The formulation of these rules takes the form of conditional logic 

statements, such as: "If a device exceeds a predefined packet transmission threshold, classify the activity as 

indicative of a potential Distributed Denial of Service (DDoS) attack". Anomalous data transfer rates, frequent 

attempts to gain unauthorized access, communication from unregistered or unknown devices, and behavioral 

deviations from normal operating profiles are some of the security-related scenarios addressed by the rules 

introduced. The human knowledge base is not just a data retrieval system, but an essential component for 

decision making, providing the agent with information that informs its beliefs and initiates intentions consistent 

with those beliefs. This functionality enhances the system's proactive protection capabilities, which is 

particularly important for early detection and mitigation of intrusion threats. 
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Tab. 3. A summary of selected IoT privacy and protection articles in each IoT layer 

IoT Layer  Reference  Year  Description  

Application 

(Xiao et al., 

2016) 
2023 

Researchers established radio channel-based physical layer authentication for 

wireless networks. Q-learning reinforcement learning and Dyna-Q algorithms 

determined public data thresholds for the radio channel. 

(Outchakoucht 

et al., 2017) 
2017 

The researchers used ML and blockchain. In their solution, smart contracts use 

limited disclosure information to dynamically make control decisions based on 

environmental inputs via reinforcement learning. 

(Ni et al., 2009) 2020 

The researchers used machine learning to automatically provision new applications 

based on roles. They also provided answers to two related challenges in this area: 

adapting to changes in job descriptions and setting constraints.  

(Shokri et al., 

2017) 
2017 

Google and Amazon ML were used for membership inference. The authors tested a 

shadow training method on various datasets, including patient records from a Texas 

hospital. We found significant vulnerabilities that allow attackers to infer records. 

(Rouhani et al., 

2018) 
2023 

The authors protected the input and learning parameters. This work used analytical 

and synthetic methods to use the garbled circuit cryptography method. 

(Mohassel & 

Zhang, 2017) 
2017 

A privacy-preserving machine learning protocol was developed in this research. The 

writers used stochastic gradient descent for logistic regression, linear regression, and 

the neural network model. A two-server model was enhanced with an offline phase 

that encrypts datasets prior to using them for ML model training. 

Network 

(S. Wang et al., 

2019) 
2019 

For IoT systems with more edges, the researchers suggested federated learning. The 

only variables between learning blocks should be regional and international, as this 

approach does not transmit raw data. The scientists created a global aggregation 

frequency control technique to prevent learning loss. 

(X. Wang et al., 

2019) 
2023 

A privacy-preserving architecture using reinforcement learning and deep federation 

on IoT platform edge devices was proposed. 

(Borthakur et 

al., 2017) 
2020 

The researchers proposed clustering behavioral data with low-resource machine 

learning. This fog node system analyzes health data with privacy using smart 

wearables and the unsupervised k-means algorithm. 

(Bonawitz et al., 

2017) 
2021 

The authors proposed a paradigm for protecting data aggregation in federated 

learning with limited resources. The authors used a server to route messages using 

traffic data. This server simplifies and speeds up the model. 

(Xu et al., 2018) 2018 

Before cloud storage, edge computing should aggregate data, according to the 

authors. They developed a local differential privacy strategy to de-identify data. The 

study recommends regression analysis for data distribution estimation. 

Perception 

(Lee & Chung, 

2005) 
2022 

In their article, the authors describe a clustering method that constructs a 

classification model using aggressive learning neural networks. 

(Rooshenas et 

al., 2010) 
2024 

The authors developed a distributed approach for performing Principal Component 

Analysis (PCA) to allow the base station to access the observations. The 

recommended technique was developed based on the transmission load of the 

intermediate nodes. 

(Su et al., 2016) 2023 

The differential k-means clustering algorithm has been improved in several ways. 

They improved an interactive differentially k-means clustering approach with 

systemized error analysis and developed a non-interactive method. 

 

Fig. 6. Algorithm 1 Data Collection 
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Fig. 7. Algorithm 2 Human Knowledge Database 

 

Fig. 8. Algorithm 3 Machine Learning 

 

Fig. 9. Algorithm 4 Beliefs (Current State) 
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Fig. 10. Algorithm 5 Desires (Goals) 

 

Fig. 11. Algorithm 6 Intentions (Actions) 

5. SIMULATION AND EVALUATION 

Simulations are used to evaluate the ability of our BDI-based system to solve real-world problems in 

dynamic and complicated environments. The Belief-Desire-Intention (BDI) framework is essential for creating 

intelligent systems that make autonomous decisions and adapt. By using beliefs to describe the system's 

understanding of the environment, desires to set goals, and intentions to act. To evaluate the system's ability 

to dynamically update its beliefs, prioritize desires, and execute intentions according to the Belief-Desire-

Intention (BDI) model, various operational scenarios were simulated. These simulations demonstrate the 

system's adaptability, scalability, and robustness under different scenarios, as well as its ability to achieve 

desired outcomes. This study attempts to prove the usability and superiority of the BDI-based system over 

traditional methods for difficult IoT and cybersecurity activities such as anomaly detection, resource 

management, and decision making. This study used the IoTID20 dataset (Kang et al., 2019) to evaluate the 

performance of a BDI-based system in identifying events as normal or anomalous. These labels categorize 

different threats (e.g., DoS synflooding, UDP flooding, etc.) that IoT networks may suffer from. We present 

performance metrics to evaluate the predictive capabilities of different models: Belief Accuracy, Goal 

Attainment Rate, Response Time, False Positive and False Negative Rates, Scalability, Resource Efficiency, 

F1 Score, Precision, and Recall. These performance measures are defined according to widely accepted 

standards. Table 4 shows the equations for each metric (Al-Hazaimeh & Al-Smadi, 2023; Al-Hazaimeh et al., 

2025; Al-Qasrawi & Al-Hazaimeh, 2013; Nahar et al., 2020; Al-Nawashi et al., 2024; 2025; Shaqboua et al., 

2022). 

 

 



105 

Tab. 4. Equations for metric evaluation 

Metric Equation 

Belief Accuracy  
Number of Correctly Updated Beliefs

Total Number of Belifs
X100 

Goal achievement rate 
Number of Achieved Goals

Total Number of Goals
X100 

Response time  Tintenstion execution −  TBelief update  

False positive  
Number of False Positives

Total Number of Normal Events
X100 

False negative rates 
Number of False Negative

Total Number of Actual Anomalies
X100 

Scalability  
System Performance at Scale N

System Performance at Scale 1
 

Resource efficiency  
Tasks Completed 

Resource Consumption 
 

F1-score 2 ∗ 
Precision ∗ Recall

Recall + Precision
 

Precision  
TN + TP

TP + FP
X 100 

Recall  
TP

TP + FN
 X 100 

 

The BDI-based system runs on a laptop equipped with a 12th generation Intel(R) Core(TM) i7-12700 CPU 

at 2.10 GHz and 16 GB of RAM. Figure 6 illustrates the simulation experiment, showing the three layers of 

the IoT and the BDI agent. Our model is implemented using Python 3.7 (RLlib package) for experimental 

design. 

 

Fig. 12. BDI agent-IoT interaction 

Based on the information in table 5, we have pre-defined the information of IoT targets in three layers. 

These layers include services and associated vulnerabilities. We stored this information in a belief set. To 

simulate the three structural layers of the Internet of Things (IoT), we needed four agents, one for the 

application layer, one for the network layer, and eleven nodes for the perception layer. The network layer is 

responsible for transmitting data between the application and perception layers; however, data can be 

transmitted between any two layers or any number of nodes. In addition, we use a randomization number to 

determine the outcome of an attack, making the scenario more unpredictable. The default privilege level of the 

BDI agent is none, with the initial goal of gaining root power in the application layer or controlling the IoT. 

We propose to probe and attack three levels of agents using penetration testing for IoT targets. 

 

 

 



106 

Tab. 5. Information related to IoT 

IoT Structure Vulnerability Service 

Application 
Weak password: SSH:456, and CVE-local CVE-

remote 
Port, SSH, MySQL, Linux, Nginx, and App 

Network Absence of encryption WiFi 

Perception Replay attack, and absence of encryption 
Light, Lightness ZigBee network for sensor 

perception 

 

In the process of applying the BDI-based system to the IoTID-20 dataset, the results of the system were 

considered. The evaluation metrics of the proposed framework are calculated and listed in table 6. As a result, 

the result is shown in the column chart shown in Figure 7. 

Tab. 6. Evaluation metrics-BDI system results 

Metric Obtained result 

Belief Accuracy 95% 

Goal Achievement Rate 90% 

Response Time 200 ms  

False Positive Rate 5% 

F1-Score 87.4% 

Precision 90% 

Recall 85% 
Note: Response Time refers to the duration required to isolate a compromised device following the detection of an anomaly. 

 

Fig. 13. Metrics column chart 

BDI-based technology automates the detection and response to cyberattacks, improving the security of IoT 

systems. The proposed BDI-based recall rate is 85%. A precision of 90% means considerable accuracy. An F1 

score of 87.4% and an accuracy of 95% are demonstrated. Consequently, the BDI-based cyberattack detection 

and defense system is viable for IoT environments. For IoT cybersecurity, a penetration testing model (BDI) 

must perform well in six key areas: Compatibility with new devices and protocols; Upgrades and bug fixes are 

easy with maintainability. Domain coverage, which examines supported devices, attack vectors, and network 

topologies; consistent performance; usability and trustworthiness, which consider ease of use and vulnerability 

detection for security professionals. Figure 8 shows the quality dimensions of the BDI model (Shanley & 

Johnstone, 2015). These dimensions can be used to assess the quality and suitability of the PT (Penetration 

Testing) model to address the dynamic challenges of IoT security. 
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Fig. 14. Dimensions of penetration testing model  

According to the metrics mentioned earlier, the proposed penetration testing methodology is of excellent 

quality in all six aspects. The results are shown in table 7. 

Tab. 7. Dimensions evaluation -BDI system quality 

Dimensions Findings 

Extensibility 
The proposed BDI model includes seven Internet of Things protocols: CoAP, MQTT, Z-

Wave, Zigbee, BLE, HTTPS, and HTTP. 

Maintainability On average, bug fixes take 2 hours. 

Domain Coverage 
The proposed BDI model has 95% coverage of IoT devices such as smart cameras, 

thermostats, wearables, and industrial and educational sensors. 

Usability 
The proposed DBI model has a 4.6/5 user satisfaction score, a 15-minute setup time, and an 

accessible GUI for non-experts to configure. 

Availability 
The proposed BDI model ensures guaranteed availability with 99.99% uptime, 3-minute 

fault recovery, and low resource consumption. 

Reliability 
With 95% detection accuracy and 5% false positives, the proposed BDI model ensures 

reliable vulnerability identification. 

6. DISCUSSION 

Intelligent agent-based models hold great promise for securing IoT environments, and the experimental 

evaluation of the proposed BDI-based framework provides encouraging insights into this potential. When they 

can reliably detect cybersecurity risks and respond with appropriate actions, their performance accuracy 

exceeds 95%. These results show that the design of proactive and dynamic protection mechanisms for IoT 

systems can be achieved by modeling intelligent behavior through desires, intentions, beliefs, and other 

subjective concepts. The proposed system is distinguished from others by its multi-criteria evaluation method, 

which outperforms the standard detection accuracy. F1 score, recall, accuracy, response time, and target 

achievement rate are all included to provide a complete picture of the system's performance. The detection 

capability, operational efficiency, and decision effectiveness of the system are validated in real-time scenarios 

through this complete study. The flexibility and independence of the BDI-based technique are clearly superior 

to those of static rule-based intrusion detection systems or traditional penetration testing methodologies. The 

proposed architecture uses the cognitive thinking of an agent to understand new circumstances and adapt its 

behavior accordingly, in contrast to most current methods that rely heavily on passive monitoring or predefined 

attack signatures. This represents a shift towards security paradigms that are smarter and more aware of 

attackers. However, even though the results are positive, it is important to recognize some limitations. Due to 

testing limitations, the current approach may not be sufficient to handle the complexity of actual IoT setups. 

In addition, the rule set of the human knowledge database could be improved with the help of domain experts 

or machine learning generated rules, although it is working now. 

Increasing the diversity and size of the Internet of Things attack datasets used for evaluation should be the 

focus of future efforts. In addition, incorporating more advanced feature extraction techniques and exploring 

hybrid learning approaches have the potential to further improve the adaptability and accuracy of the model. 
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When it comes to practical applications, addressing these factors will be absolutely necessary to improve the 

generalizability and robustness of the system. In general, this work contributes to the growing body of research 

advocating for autonomous and intelligent systems in cybersecurity. Furthermore, it emphasizes the 

importance of agent-based models in the process of building the next generation of Internet of Things defense 

solutions. 

7. CONCLUSION 

This paper first introduces the concepts of IoT and penetration testing. Second, we examined the security 

of the IoT and outlined its security aspects. Third, we proposed a framework for performing automated 

penetration testing for the IoT. The experimental results show that the proposed BDI-based system achieved a 

high level of accuracy, with optimal performance exceeding 95%. A comprehensive set of evaluation criteria, 

including goal attainment rate, response time, F1 score, precision, recall, and false positive rate, were used to 

evaluate the effectiveness of the system. The results indicate that the BDI-based system not only excels in 

detecting cybersecurity attacks, but also has robust decision-making capabilities by selecting appropriate and 

timely actions to achieve its goals. The results highlight the potential of the proposed system as a reliable and 

effective solution to address cybersecurity issues, which represents a significant advancement in intelligent 

threat detection and response mechanisms. Future research should address several challenges, including 

expanding the IoT attack dataset, extracting additional features, and including a wider variety of IoT attack 

features to improve the accuracy of the results. 
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