
 

Applied Computer Science 2025, vol. 21, no. 2, pp. 111–127 

https://doi.org/10.35784/acs_6958 

 

111 

Submitted: 2024-12-17 | Revised: 2025-01-27 | Accepted: 2025-02-13                                                                                                                                           CC-BY 4.0 

Keywords: genomic data, Kernal Fisher score, prominent gene selections,  

sine-cosine ensembled monarch butterfly optimization,  

two phase ensembled deep learning, classification accuracy 

Prajna Paramita DEBATA 1*, Pournamasi PARHI  1, Alakananda TRIPATHY 1, 

Smruti Rekha DAS 2 
1 S’O’A Deemed to be University, India, prajnaparamitadebata@soa.ac.in, pournamasiparhi@soa.ac.in, 

alakanandatripathy@soa.ac.in 
2 GITAM Deemed to be University, India, sdas5@gitam.edu 
* Corresponding author: prajnaparamitadebata@soa.ac.in 

A two phase ensembled deep learning approach  
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Abstract 

By gaining new insights into the gene expression of individual patient profiles, clinicians and researchers 

can identify patterns, biomarkers and therapies. In addition, accurate classification enables the 

development of predictive models for prognosis and treatment response, facilitating personalized medicine 

approaches. Determining the optimal model for classification remains a time-consuming, nondeterministic, 

polynomial-time hard problem. However, the available large amount of gene expression data is too much 

for the traditional data analysis approaches. Therefore, a two-phase ensemble deep learning approach can 

be considered as a reliable framework for the root-level investigation of genomic data. In this experimental 

model, a gene extraction approach, a Kernel-Applied Fisher Score (KFScore) method is presented to select 

the prominent genomes, and a Sine-Cosine Ensemble Monarch Butterfly algorithm (SC-MBO) optimized 

CNN (Convolutional Neural Network) strategy is implemented for genomic data classification. Here, the 

SC-MBO ensemble approach is used to obtain the optimal value of hyperparameters in CNN. The 

effectiveness of the presented model is estimated by accuracy% of classification, number of extracted 

prominent genomic features, sensitivity, specificity and ROC (Receiver Operating Characteristic) curve. 

The effectiveness of the proposed methods is successfully tested on GSE13159, GSE15061, GSE13204, 

breast cancer and ovarian cancer gene expression dataset with 91.6%, 90.22%, 91.9%, 97.93% and 99.6% 

accuracy. The proposed model is also compared with other existing models. According to the experimental 

evaluation, the proposed strategy is accurate, reliable and robust. Consequently, the presented method can 

be treated as a trustworthy basis for disease risk prediction. 

1. INTRODUCTION 

Despite advances in medical care, the diagnosis of cancer remains a formidable undertaking. A recent 

breakthrough in cancer research involves the use of microarray-based genomic expression profiling (Shilaskar 

et al., 2017). This innovative technology allows researchers to accurately identify which genes are involved in 

a tissue under different conditions. Nevertheless, unlocking new insights from gene expression or microarray 

data poses significant challenges for researchers, including the hurdles of high dimensionality, redundant gene 

concerns, missing or imbalanced data, retrieval of biological information, and susceptibility to bias from 

various factors (Ang et al., 2015). 

However, a major obstacle in microarray analysis is the high dimensionality of the data (Aziz et al., 2016). 

The computational complexity of handling such high-dimensional datasets is increased, underscoring the need 

to reduce the size of the genomic attribute for effective analysis of cancer genomic data. These challenges have 

led to a surge of interest in various data mining approaches for the analysis of cancer genomic data (Golub et 

al., 2015). Classification of unstructured, high-dimensional genomic data for disease diagnosis is a daunting 

task due to its high dimensionality, resulting in significant computational complexity. Researchers have 

proposed numerous feature extraction/selection techniques coupled with classification models to address this 

problem on various benchmark datasets. Nevertheless, determining the optimal model for classification 
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remains a time-consuming, nondeterministic, polynomial-time hard problem. Therefore, there is a constant 

opportunity for the implementation of novel algorithms in this area. 

In this study, an ensemble approach of deep learning is proposed for cancer data classification. In this 

regard, deep learning algorithms have gained significant interest for disease classification using gene 

expression data (Panda, 2017). Among the various deep learning methods, the CNN model has demonstrated 

its effectiveness (Kilicarslan et al., 2020), especially in dealing with unstructured high-dimensional data. 

In this study, a feature selection algorithm known as Kernel Fisher Score-based (KFScore) (Polat & Güneş, 

2009) is used to select informative genes. In addition, an ensemble approach combining the sine-cosine method 

with the Monarch Butterfly algorithm (Wang et al., 2019a), referred to as SC-MBO, is applied to optimize the 

hyperparameters of the CNN and effectively classify high-dimensional cancer data. The key aspects of this 

research are outlined below: 

− First, the KFScore algorithm is used to identify significant genes. 

− Then, the SC-MBO algorithm is used to determine the optimal hyperparameter values for the CNN. 

− The SC-MBO ensemble CNN classifier is then implemented to classify cancer data. 

− To address the author's concern, this study introduces the KFScore-based SC-MBO CNN model, a novel 

approach to high-dimensional cancer data classification. In particular, the parameters of the CNN are 

optimized using SC-MBO. 

− A comparative analysis is performed between the proposed ensemble deep learning approach (SC-

MBO-CNN) and other basic machine learning classifiers. 

The remaining papers are organized as follows: While Section 3 provides an overview of the proposed 

paradigm, Section 2 explores related literature. In Section 4, all backbone approaches (supporting methods) 

and the proposed algorithm are explained. The experimental design criteria are explained in Section 5, and the 

results are examined in Section 6. Finally, concluding thoughts and implications for the future are given in 

Section 7. 

2. SURVEY ON EXISTING WORK 

To efficiently categorize high-dimensional malignant data, a large number of researchers have presented 

robust classification models and a variety of feature extraction strategies. To select the most salient features, 

several ensemble techniques combine machine learning techniques with a variety of metaheuristic algorithms 

(Mohapatra et al., 2016; Alshamlan et al., 2015). These ensemble techniques clarify how genes interact with 

each other and improve the effectiveness of gene extraction strategies. 

Various ensemble classification techniques have been used to efficiently select key features and classify 

genomic data. Baliarsingh et al. (2020) used a MapReduce (MR) ensembled Fisher score for gene extraction 

strategy and an MR-based probabilistic neural network (PNN) for classification of genomic data. Kumar and 

Rath (2015) applied a MapReduce feature selection technique with MapReduce SVM for cancer classification. 

Wang et al. (2019b) applied the Adaptive Elastic Net with Conditional Mutual Information (AEN-CMI) 

technique to classify leukemia and colon data. Mohapatra et al. (2016) employed a cat swarm hybridized 

Kernel Ridge Regression classifier to efficiently classify genomic data. Diaz and Ludwig (2006) and Ludwig 

et al. (2015) used random forest with a fuzzy decision tree algorithm to classify medical data. Medjahed et al. 

(2017) proposed a Binary Dragonfly (BDF) ensembled Support Vector Machine ensembled Recursive Feature 

Elimination (SVM-RFE) strategy for classification of genomic data. An ensembled model of Stacked 

Autoencoder with CNN was applied for classification of gene expression data (Liu et al., 2017). Kilicarslan et 

al. (2020) proposed an ensembled model of ReliefF and CNN for biomedical data classification in this domain. 

Liao (2017) implemented a multi-task deep learning (MTDL) strategy for data classification. Zeebaree et al. 

(2018) presented a CNN classifier for medical data classification. Polat and Güneş (2009) introduced a kernel 

function applied FS strategy for biomedical data classification. A new evolutionary algorithm optimized CNN 

is also presented by Erik et al. (Bochinski et al., 2017) for data classification. In this domain, Debata and 

Mohapatra (2022) classify high-dimensional tumor data and select the most informative genes by combining 

CNN and chaotic Jaya algorithm. This work focuses on reducing computational time and improving 

performance through a hybridized deep learning model. 

All the models in the previous literature review used deep learning techniques or traditional machine 

learning algorithms to classify genomics data. In contrast, this study compares deep learning methodology 

with traditional machine learning techniques to classify genomics data. In addition, we have proposed an 
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ensemble strategy that combines a KFScore-based filter for feature extraction with an SC-MBO-optimized 

CNN, or SC-MBO-CNN model, for classification of malignant data. The main motive of this experimental 

work is to assist physicians in efficiently diagnosing a malignant and non-malignant cancer cell within a 

reasonable time frame with high accuracy. The following section provides a detailed explanation of the 

proposed model. 

3. PROPOSED TWO-PHASE ENSEMBLED APPROACH  

In this study, we present an ensemble two-phase method for the selection of significant genomic features 

and classification of cancer data. Figure 1 shows the general strategy of the KFScore ensemble SC-MBO-CNN 

approach. Using min-max normalization, all datasets are normalized and missing cells are imputed with the 

value that occurs most frequently for that particular feature (Mohapatra et al., 2016). After normalization, the 

dataset is divided into a training set and a test set. Then, a filtering method called KFScore is used to select the 

most relevant genetic attribute. For classification, the KFScore filtered genes are given to the optimized SC-

MBO-CNN. At the same time, the hyper-parameters, i.e., dropout rate, learning rate, batch size, and number 

of layers of the CNN are optimized by SC-MBO. Finally, the test set with the best feature subset is used to 

estimate the KFScore-SC-MBO-CNN method, and the accuracy is used to evaluate the results. Furthermore, 

the presented method is also compared with other common machine learning classification models. 

 

Fig. 1. The overall description of the presented KFScore-SC-MBO-CNN strategy 
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4. BACKBONE METHODOLOGIES AND PROPOSED ALGORITHM 

4.1. CNN model architecture 

 

Fig. 2. A comprehensive structure of the CNN model 

CNNs (LeCun et al., 2015) involve a convolution operation in the input layer with interconnected 

connections, unlike standard artificial neural networks (ANNs), where input layer neurons are directly 

connected to output layer neurons in the following layer. Selected filters are used by each layer of the CNN 

and the outputs are connected. In the training phase, features are trained in each layer. The general layout of 

the current CNN is shown in figure 2, where the raw input data is preprocessed before entering the convolution 

layer. The working principle of the main layers of the CNN is explained below: 

Step-1: Input Layer 

Receive input of five extensive cancer data, such as GSE13159, GSE15061, GSE13204 breast cancer, 

ovarian cancer (19) Data in the form of matrices.  

Step-2: Convolutional Layer 

This layer selects features from the input data based on specified dimensions using filters. At this stage, 

weights are randomly generated. In this study, these weights are used to apply a 3x3 filter to the one-

dimensional data, creating a new feature map. This convolution process is repeated on the entire data set. The 

resulting data set is subjected to the Rectified Linear Unit (RELU) activation function. Then, a normalization 

technique is implemented to preserve the dispersion of the data, which may undergo changes during the 

convolution process. 

Step-3: Pooling Layer 

Sample feature maps obtained from the convolutional layers to reduce spatial dimensions. This helps in 

retaining the most relevant information while reducing the computational complexity. In this study, the Max 

Pooling technique is used with a pool size and stride value of 2 to extract the most important features. During 

the training phase, the neuron dropout method with a dropout rate of 0.2 is used to mitigate overfitting. For 

both the categorization within the fully connected layer and the connectivity with the neurons in the layer 

above, the neuron density is set to 1024. 

Step-4: Fully Connected Layer 

Process the flattened feature vectors through one or more fully connected layers. These layers learn to 

classify the extracted features and establish connections between different parts of the input data. 

Step-5: Output Layer 

Unlike Recurrent Neural Networks (RNN), CNN is preferred in deep learning for classification due to its 

ability to handle memory more efficiently, especially when dealing with high-dimensional datasets, resulting 

in higher classification accuracy rates. In addition, the use of the rectified linear unit (ReLU) activation 

function in CNN addresses the vanishing gradient problem encountered in RNN (LeCun et al., 2015). Finally, 

this probability-driven layer is used to improve the accuracy. A softmax function is used in this layer to 

normalize the output values by converting them to probability values. These probability values are then used 

to classify the test data. 

4.2. Selection of genes using KFScore 

In the basic Fisher Score (FScore) method, the score (or value) of a gene is determined using equation (1). 

Then, by calculating the mean value of all FScore values of a gene, a threshold value (THV) is derived. Genes 
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with FScore values above the THV are included in the feature set, while those with FScore values below the 

THV are excluded from the feature set. 
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𝑧𝑥 is the training vector, 𝑧+  and 𝑧−represent the no. of positive and negative instances in Eq. (1). 

Additionally, 𝑧�̅� signifies the ith gene among all the datasets, 𝑧�̅�(+) represents the ith attribute of the positive 

datasets, 𝑧�̅�(-) denotes the ith attribute among the negative datasets. 

Likewise, 𝑧𝑘,𝑖
(+)

 corresponds to the ith gene or attribute of the kth positive instances, and 𝑧�̅�
(−)

 stands for the 

ith gene among the kth negative instances. In particular, the basic FScore approach does not take into account 

the mutual information between genes, which is a significant drawback (Chen & Lin, 2006). To address this 

limitation, the KFscore (Polat, & Güneş, 2009) is not only nonlinearly differentiable data sets into linearly 

differentiable ones, but also reduces the computational complexity. The steps involved in KFScore are 

summarized in Algorithm 1. 

 

Algorithm 1: Feature selection by KFscore  

Input: Normalized high-dimensional data set 

Output: Reduced cancer dataset with key attribute subset 

1. Start. 

2. By using a kernel function, i.e, linear functions or RBF (Radial Basis Function), the 

input feature spaces of the data are converted to kernel space. 

3. After the transformation, Fisher Score (FS) values for datasets with high-dimensional 

attribute spaces are computed using Eq. (1). 

4. The mean of all Fisher Score values is then determined and this result is considered the 

Threshold Value (THV). 

5. Finally, features with FScore values above the THV are included in the feature space, 

while genes with FScore values below the THV are excluded from the feature space. 

6. End. 

4.3. MBO algorithm 

The MBO is a recently developed nature-inspired optimization algorithm inspired by the migration rules of 

monarch butterflies, particularly those available in North America (Wang et al., 2019a). This algorithm is 

characterized by its simplicity and ease of implementation, relying on two primary variables: The Migration 

Operator (MO) and the Butterfly Adjustment Operator (BAO). Figure 3. provides a visual representation of 

the MBO algorithm. 

 

 

Fig. 3. Visual depiction of the MBO 

 

Region (1) 

Population  Rp1 

Region (2) 
Population  Rp2 
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4.3.1. Operator-I (MO) 

The primary aim of the MO is to facilitate information interchange among two populations within 

subpopulation-1. Every butterfly in subpopulation 1 updates in accordance with another butterfly's location 

and is influenced by the migration ratio, denoted as "g" in both populations.  The updating equation for the lst 

butterfly in subpopulation-1 can be formulated as follows: 

𝑆𝑘,𝑛
𝑚+1 = {

𝑆𝑘1,𝑛      𝑖𝑓 𝑝<𝑔
𝑚

𝑆𝑘2,𝑛       
𝑚 𝑒𝑙𝑠𝑒

                  (2) 

𝑆𝑙,𝑛
𝑚+1 is the location of 𝑆𝑙 on the 1th dimension in the (m+1)th generation, and 𝑘1and 𝑘2 are integer indices 

randomly selected from two subpopulations. The parameter p is defined as p=(Rand*Peri), where Rand is a 

randomly chosen real number in the range (0-1) and Peri is the migration time. 

4.3.2. Operator-II (BAO) 

The displacement of each butterfly-l within subpopulation-2 is determined by considering the adjustment 

ratio p and the butterfly's adjustment rate (ARB). 

𝑆𝑙,𝑛
𝑡+1 = {

𝑆𝑏𝑒𝑠𝑡,𝑛
𝑚                                                                                   𝑖𝑓 𝑅𝑎𝑛𝑑 ≤ 𝑔                        

𝑆𝑙3,𝑛
𝑚                                        𝑖𝑓  𝑅𝑎𝑛𝑑 > 𝑔 ʌ 𝑅𝑎𝑛𝑑 ≤ 𝐴𝑅𝐵                                           

𝑆𝑙,𝑛
𝑚 + 𝜉 × (𝑑𝑆𝑛 − 0.5)                                                𝑖𝑓𝑅𝑎𝑛𝑑 > 𝑔 ʌ 𝑅𝑎𝑛𝑑 > 𝐴𝑅𝐵

    (3) 

 

𝑆𝑏𝑒𝑠𝑡,𝑛
𝑚  represents the nth element of the global best, and ( 𝑆𝑙3,𝑛

𝑚 )is the nth element of a randomly chosen 

butterfly at generation m. 

The butterfly chosen from subpopulation-2, denoted as ξ, is expressed as a weighted factor, and can be 

defined as: 

𝜉 = 𝑋𝑚𝑎𝑥 𝑚2⁄                                                        (4) 

In this context, 𝑋𝑚𝑎𝑥 denotes the highest walking step of each butterfly in all subsequent steps, m denotes 

the current generation, and 𝑑𝑆𝑛denotes the steps taken by each butterfly i, based on the strategy of the Levy 

flight approach, as follows: 

𝑑𝑆𝑛 = 𝐿𝑒𝑣𝑦(𝑆𝑛
𝑚)                                                                   (5) 

In this context, ξ significantly influences both 𝑑𝑆𝑛and 𝑆𝑙,𝑛
𝑡 . A higher ξ value accelerates exploration in the 

search space, while a smaller ξ value facilitates exploitation in the search space. 

4.5. SC ensembled MBO algorithm 

This section outlines the rationale behind the fusion of the Sine Cosine (Sharma et al., 2022) and MBO 

algorithms. While SC is known for its exceptional exploration capabilities, there are instances where it 

struggles to strike a balance between the exploitation and exploration phases, resulting in suboptimal results. 

In some cases, the SC algorithm may overlook the global best solution, resulting in limited exploitation. This 

reduces the overall search efficiency of the algorithm. On the other hand, the MBO algorithm is efficient at 

maintaining a balance between exploration and exploitation during the search process. However, like other 

evolutionary algorithms, MBO is susceptible to getting stuck at local optima. 

To address these issues, a hybrid algorithm, namely SC-MBO, is proposed here. The hybridization of SC 

and MBO aims to utilize the exceptional exploration capability of the SC algorithm, while improving the 

exploitation capabilities and avoiding the local optima trap characteristic of MBO. The steps for SC ensemble 

MBO are detailed in the following two algorithms (Algorithm 2 and 3). 
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Algorithm- 2: MO-I 

Start  

   for m = 1 to P1(population of Region1) 

      for k = 1 to i (elements of mth MB) 

q  rand * L, here, random ~ R(0,1) 

   if q ≤ s then 

      𝐶𝑚,𝑘
𝑡+1 = 𝐶𝑞1,𝑘

𝑡+1 Here, q1 ~ R (1,2,3, …, X1)                                                                 (6) 

                   elseif random () < 0.5 

             𝐶𝑚,𝑘
𝑡+1 =       𝐶𝑚,𝑘

𝑡 +  𝑐1 × sin (𝑐2) × 𝑐3|𝐷𝑚,𝑘
𝑡 − 𝐶𝑚,𝑘

𝑡 |                               (7) 

             else 

               𝐶𝑚,𝑘
𝑡+1 =       𝐶𝑚,𝑘

𝑡 + 𝑐1 × 𝑐𝑜𝑠 (𝑐2) × 𝑐3|𝐷𝑚,𝑘
𝑡 − 𝐵𝑚,𝑘

𝑡 |                            (8) 

         end elseif 

    end if 

    if q>s then 

          𝐶𝑚,𝑘
𝑡+1 = 𝐶𝑞2,𝑘

𝑡+1 𝑤ℎ𝑒𝑟𝑒 q2 ~ R                                                                         (9) 

          elseif random () < 0.5 

         𝐶𝑚,𝑘
𝑡+1 =       𝐶𝑚,𝑘

𝑡 +  𝑐1 × sin (𝑐2) × 𝑐3|𝐷𝑚,𝑘
𝑡 − 𝑍𝑚,𝑘

𝑡 |                                   (10) 

          else 

         𝐶𝑚,𝑘
𝑡+1 =       𝐶𝑚,𝑘

𝑡 +  𝑐1 × cos (𝑐2) × 𝑐3|𝐷𝑚,𝑘
𝑡 − 𝑧𝑚,𝑘

𝑡 |                                      (11)

       end elseif 

        end if 

       end for k 

   end for m 

End 

 

Algorithm-3: BAO-II 

Start 

for n   1 to P2(population of region 2) 

   for k   1 to i (elements of nth MB) 

       if q ≤ s then,  

        𝐶𝑛,𝑧
𝑡+1 = 𝐶𝑏𝑒𝑠𝑡,𝑘

𝑡  where random ~ R (0,1)                                                           (12) 

      elseif random () < 0.5 

                    𝐶𝑛,𝑘
𝑡+1 =       𝐶𝑛,𝑘

𝑡 +  𝑐1 × sin (𝑐2) × 𝑐3|𝐷𝑛,𝑘
𝑡 − 𝐶𝑛,𝑘

𝑡 |                             (13) 

             else 

                    𝐶𝑛,𝑘
𝑡+1 =       𝐶𝑛,𝑘

𝑡 +  𝑐1 × 𝑐𝑜𝑠 (𝑐2) × 𝑐3|𝐷𝑛,𝑘
𝑡 − 𝐶𝑛,𝑘

𝑡 |                          (14) 

       end elseif 

         end if 

          if q>s then 

          𝐶𝑛,𝑘
𝑡+1 = 𝐶𝑟3,𝑘

𝑡+1 𝑤ℎere, q3 ~  (1,2, 3,…, X2)                                                     (15) 

          elseif rand () < 0.5 

         𝐶𝑛,𝑘
𝑡+1 =       𝐶𝑛,𝑘

𝑡 +  𝑐1 × sin (𝑐2) × 𝑐3|𝐷𝑛,𝑘
𝑡 − 𝑧𝑛,𝑘

𝑡 |                                       (16) 

        else 

         𝐶𝑛,𝑘
𝑡+1 =       𝐶𝑛,𝑘

𝑡 +  𝑐1 × cos (𝑐2) × 𝑐3|𝐷𝑛,𝑧
𝑡 − 𝑧𝑛,𝑘

𝑡 |                                       (17) 

        end elseif 

           end if 

 if q> random () 

    𝐶𝑛,𝑘
𝑡+1 =       𝐶𝑛,𝑘

𝑡 +  𝛽 × ((𝑑𝑐𝑘) − 0.5))                                                              (18) 

end  

       end for k 

   end for n 

End 
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In Algorithm-2, 𝐶𝑚,𝑘
𝑡+1 represents the kth element of Cm at the (t + 1)th generation, signifying the m location 

of the MB in Region1. Similar, 𝐶𝑞1,𝑘
𝑡  is the kth element of 𝐶𝑞1

 in the tth generation, indicating the current position 

of the 𝑞1 Monarch butterfly after modification. Finally, 𝐶𝑞2,𝑘
𝑡  is the kth element of 𝐶𝑞 in the tth generation, which 

represents the updated position of the 𝑞2 MB at that time. 

Here, 𝐶𝑛,𝑘
𝑡+1 illustrates the kth element of C n in (t + 1)th generation, denotes the n location of the Monarch 

butterfly (MB) in Region2. Similarly, 𝐶𝑟3,𝑘
𝑥  is the kth element of 𝐴𝑞3

 in the tth generation, which represents the 

currently updated position of the 𝑞3 Monarch butterfly. The variable 𝑑𝑐𝑘 symbolizes the walking step of the 

nth Monarch butterfly, determined by applying the Levy flight mechanism. In this context, t is taken as the 

current generation, β is defined as 𝛽 = 
𝐼𝐵𝑚𝑎𝑥

𝑡⁄  where 𝐼𝐵𝑚𝑎𝑥 = represents the maximum walking distance of 

each butterfly in a single step. 

4.6. Proposed SC-MBO optimized CNN (SC-MBO-CNN) algorithm 

In this study, the hyper-parameters such as learning rate, batch size, number of layers and dropout rate of 

Convolutional Neural Network (CNN) are optimized using SC-MBO.  

The learning rate (LR ) indicates the amount of learning in each iteration. If the value is too small, the 

learning process may terminate prematurely before training is complete. Conversely, if the value is too large, 

the learning process may become disconnected and stop learning correctly. 

Dropout is the random removal of neural connections. Without dropout, the network tends to overfit the 

training data, resulting in reduced accuracy on test data. To mitigate overfitting and improve accuracy, the 

dropout process is recommended. Notably, the dropout effect is less pronounced in convolution layers 

compared to fully-connected layers due to the relatively fewer parameters in convolution layers (Yoo et al., 

2019). Here, dropout rates are assigned to convolutional layers (referred to as DR1) and fully connected layers 

(referred to as DR2). 

Here, the number of layers (NL)  needs to be optimized because it plays a crucial role in extracting 

features from the dataset. The greater the depth of the layer, the more effective the extraction of smaller 

features.  Therefore, it is important to determine the optimal number of layers for the given dataset. 

Tab. 1. Dynamic ranges of hyper parameters 

Hyper parameter Range 

Learning Rate (LR) 0.0001-0.1 

Dropout Rate (DR1) 0-0.5 

Dropout Rate (DR2) 0-0.5 

Batch Size (BS) 50, 100, 150, 200, 250, 500, 1000 

No. of Layer (NL) 1-4 

 

The parameter values are limited to dynamic ranges as shown in Table 1. If the parameter values exceed 

these ranges, they are adjusted to fall within the specified dynamic range. Figure 4 and Algorithm 4 provide a 

visual representation and a step-by-step flow of the proposed model, respectively. 
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Name of the 

algorithm4: 

SC-MBO-CNN  

Input: Population size (PS), No. of iterations (NI), Upper and lower bound (LB &UB) for LR, DR1, DR2, BS, NL 

Output:  CAP (Classification accuracy percentage) 

Step(S) 

S-1: 

 

Begin 

S-2:   Initialize PS, NI, LR, DR1, DR2, BS, NL. 

S-3: For each resulting solution, the fitness(Fit) value is obtained. (Fitness is CAP when CNN is applied to 

previously selected significant features by KFScore with the initialized value of LR, DR1, DR2, BS and NL) 

S-4: Save the fitvalues in descending order. Highlight the best and worst. 

S-5: Sort the population(PS)based on the index position of the ordered fitness values. 

S-6: Assign the fitness value and corresponding location of the best solution as the fitness value and location. 

S-7: Compute the mean_Fit. 

S-8: while Itr < Max_ Itr do 

S-9: if Itr     1 then   

S-10: for j 1: PS do 

S-11: Update the solution’s position with LR, DR1, DR2, BS and NL by using Eqs. (9-21). 

S-12: end for 

S-13: elseif (current_mean_Fit – previous_mean_Fit)/current_mean_Fit > 0.001 

S-14:        then 

S-15: Repeat S-10 to S-12 

S-16: else 

S-17: break. 

S-18:         end elseif 

S-19: end if 

S-20: for every upgraded candidate solution do 

S-21: Check the LB and UB values for the candidate's solution position., LR, DR1, DR2, BS and NL 

S-22 Repeat S-2 to S-3 for recalculate the new_Fit values. 

S-23:           if current_ Fit > previous_Fit, then 

S-24: Change the Fit value of the solution. 

S-25: Upgrade the solution location, LR, DR1, DR2, BS and NL. 

S-26: else 

S-27: Store the Fit result of prior one. 

S-28: Point out the solution location, LR, DR1, DR2, BS, and NL of the prior candidate solution. 

S-29: end if 

S-30: Repeat S-4 to S-7 

S-31: end for 

S-32: end while 

S-33: Achieve the final Fit result (i.e., CAP). 

S-34: End 

4.7. Complexity analysis of the suggested algorithm 

The computational complexity of the presented methods, namely KFScore, SC-MBO and CNN, is detailed 

in Table 2. In this table, "Itr" denotes the iterations, "TI" denotes the training instances, and "NF" denotes the 

number of attributes in the computation of the complexity of KFScore. The time complexity of adjusting the 

solution positions in SC-MBO depends on both the population size and the dataset dimension. In the 

computational complexity expression of SC-MBO, "PS" corresponds to the population size and "Dim" 

corresponds to the dataset dimension. For the computational complexity of CNN, the following variables are 

used: "CV" denotes the number of layers in the convolutional layer, "l" denotes the layer, "Ml-1" denotes the 

number of inputs in layer l, "Fl" denotes the number of filters, "Sl" denotes the size of the filter, and "Al" 

denotes the size of the feature map. 
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Tab. 2. Complexity of the presented methods 

Applied Methods Complexity 

KFS 𝑂 (𝐼𝑡𝑟 ∗ 𝑇𝐼 ∗ 𝑁𝐹) 

SC-MBO 𝑂 (𝑃𝑆 ∗ 𝐷𝑖𝑚) 

CNN 

𝑂 (∑ 𝑀𝑙−1

𝐶𝑉

𝑙=1

∗  𝐹𝑙 ∗ 𝑆𝑙 ∗ 𝐴𝑙) 

5. EXPERIMENTAL MEASURES 

5.1. System setup 

The experiments are conducted in a setup consisting of Google Co Lab and Python 2.7 (64 bits) as the 

programming language. 

5.2. Datasets description 

The effectiveness of the proposed approach is verified using five very high-dimensional cancer datasets 

obtained from NCBI GEO. Detailed descriptions of the datasets are given in Table 3. 

 

Fig. 4. Visual representation of the proposed scheme 
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Tab. 3. The detailed elaboration of the five high dimensional  an erous datasets 

Can erous data # Sample # Feature  # Classes Memory si e 

GSE13159 [19]  2096 54674 18 1.93 GB 

GSE15061 [19]  870 54675 3 650 MB 

GSE13204 [19] 3248 1480 18 1.96 GB 

Breast Cancer [19] 97 24481 2 20.2 MB 

Ovarian cancer [19] 253 15154 2 32.6 MB 

5.3. Initialization value of the parameters 

A comparative analysis was conducted between the SC-MBO-CNN model and conventional machine 

learning approaches, including SC-MBO-ELM, SC-MBO-MLP, and SC-MBO-KELM. Table 4 provides a 

comprehensive overview of the default values of parameters of all above algorithms. 

Tab. 4. A comprehensive overview of the initialization values of the parameters  

M   E M KE M CNN SC-MBO 

# iterations  100 

# Hidden layers (HL) 

 3 

# Nodes in each HL  5 

# iterations 100 

# nodes HL  15 

C, γ   [2-

7, 2-8, …, 

27, 28] 

Activation function   ReLU 

Pad size (P)   2 

# Kernel (KS)   4 

Pooling algorithm (Po)   

Max 

Output function   Sofmax 

Training Epochs   100 

# Population  100 

# Iterations  100 

Constant (l)   3.0 c1   20  

c2   rand(0,2π) 

c3   20 

c4   rand (0,1) 

Default migration period 

(MP)  1.2 

Default migration ratio   5/12 

Adjusting value   5/12 

Size of max step walk  1 

5.4. Performance evaluating measures 

Here, in 10-fold CV, each fold reserves thirty percent of the samples from the total data for testing, while 

the remaining seventy percent is used for training. To mitigate the inherent randomness in the meta-heuristic 

algorithm, this study performs 10 independent runs and the result is defined as the average of these runs. In 

addition, the performance evaluation includes measures such as accuracy percentage, sensitivity (Mohapatra 

et al., 2016), specificity (Mohapatra et al., 2016), and receiver operating characteristic (ROC) (Debata & 

Mohapatra, 2022). 

6. DISCUSSION OF EXPERIMENTAL OUTCOME 

The enormous amount of unrelated genes in the dataset contributes to the curse of dimensionality problem. 

Basic Fisher Score approaches and Kernel based Fisher Score techniques are applied to solve this problem and 

select the most interdependent pertinent features from the input data set. Both techniques assign a score to each 

attribute. Then, the attributes are ranked in descending order based on their scores and the features with the 

highest rank are selected. Table 5 shows a comparison of the proposed ensemble classification approaches in 

terms of accuracy with the number of selected features, specificity and sensitivity. According to table 5, from 

the GSE13159 dataset, the proposed KFScore-based ensemble classification method extracts 500 genes with 

91.6% accuracy while FS-based ensemble classification method extracts 1250 genes with 90.8% accuracy. 

From GSE15061, the KFS-based ensemble classification method extracts 150 genes with 90.22% accuracy, 

while the FS-based ensemble classification method extracts 200 genes with 88% accuracy. From the 

GSE13204 dataset, the KFS-based ensemble classification method extracts 300 genes with 91.9% accuracy, 

while the FS-based ensemble classification method extracts 500 genes with 89.8% accuracy. From breast 

cancer dataset, KFS-based ensemble classification method extracts 20 genes with 97.33% accuracy while FS-

based ensemble classification method extracts 150 genes with 96.3% accuracy.  From ovarian cancer dataset, 

KFS-based ensemble classification method extracts 100 genes with 99.6% accuracy, while FS-based ensemble 

classification method extracts 250 genes with 97.8% accuracy. 
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Tab. 5. A comparison of two ensemble classification approaches accuracy with number of selected features 

 ataset Ensem led Classifi ation 

Approa h 

# Sele ted 

Features 

A  ura y% Sensiti ity% Spe ifi ity% 

GSE13159  KFScore-SC-MBO-CNN 500 91.6 90.85 89.62 

FS-SC-MBO-CNN 1250 90.8 88.62 87.53 

GSE15061  KFScore-SC-MBO-CNN 150 90.22 90.18 90.2 

FS- SC-MBO-CNN 200 88 85.56 87.26 

GSE13204  KFScore-SC-MBO-CNN 300 91.9 91.82 90.64 

FS- SC-MBO-CNN 500 89.8 88.32 89.2 

Breast  

Cancer 

KFScore-SC-MBO-CNN 20 97.93 96.65 97.72 

FS- SC-MBO-CNN 150 96.3 96.2 95.87 

Ovarian 

cancer 

KFScore-SC-MBO-CNN 100 99.6 99.12 97.53 

FS- SC-MBO-CNN 200 97.8 95.52 97.6 

 

Table 6 shows a comparison of the results (accuracy, specificity and sensitivity) between the standard 

machine learning model and the proposed ensemble deep learning method on five high-dimensional cancer 

datasets. According to table 6, in GSE13159 dataset, the proposed ensemble classification method i.e., SC-

MBO-CNN yields 91.6% accuracy whereas SC ensemble MBO-KELM, SineCosine ensemble MBO-ELM 

and SineCosine ensemble MBO-MLP yield 89.6%, 89% and 76.34% respectively. Similarly, in the GSE15061 

dataset, the proposed SC-MBO-CNN yields 90.22% accuracy, while the SC-Ensembled MBO optimized 

KELM, SC ensembled MBO optimized ELM, and SC ensembled MBO optimized MLP yield 86.9%, 83.6%, 

and 77.4%, respectively. In GSE13204 dataset, the proposed SineCosine ensemble MBO optimized CNN 

yields 91.9% accuracy while SC ensemble MBO optimized KELM, SC ensemble MBO optimized ELM, and 

SC ensemble MBO optimized MLP yield 87%, 86.2%, and 73.34% respectively. In the breast cancer dataset, 

the proposed SineCosine ensemble MBO optimized CNN yields 97.93% accuracy, while SineCosine ensemble 

MBO optimized KELM, SineCosine ensemble MBO optimized ELM, and SineCosine ensembled MBO 

optimized MLP yield 95.8%, 93.35%, and 91.76%, respectively. In the ovarian cancer dataset, the proposed 

SC-MBO-CNN yields 99.6% accuracy, while SineCosine ensembled MBO-KELM, SineCosine ensembled 

MBO-ELM, and SineCosine ensembled MBO-MLP yield 95%, 92.7%, and 89%, respectively. 

Tab. 6. Classification accuracy between the standard machine learning model and suggested method in five high-dimensional 

cancerous datasets 

 ataset Methods used A  ura y% Sensiti ity% Spe ifi ity% 

GSE13159  

 

SC-MBO-CNN 91.6 90.85 89.62 

SC_MBO-KELM 89.6 88.2 87.65 

SC_MBO-ELM 89 87.83 88.75 

SC-MBO-MLP 76.34 73.67 72.36 

GSE15061 SC-MBO-CNN 90.22 90.18 90.2 

SC_MBO-KELM 86.9 86.92 85.5 

SC_MBO-ELM 83.6 81.32 82.75 

SC-MBO-MLP 77.4 74.71 76.32 

GSE13204 SC-MBO-CNN 91.9 91.82 90.64 

SC_MBO-KELM 87 86.32 87.15 

SC_MBO-ELM 86.2 85.37 86.06 

SC-MBO-MLP 73.34 72.79 73.21 

Breast  

Cancer 

 

SC-MBO-CNN 97.93 96.65 97.72 

SC_MBO-KELM 95.8 93.2 94.65 

SC_MBO-ELM 93.35 91.35 92.95 

SC-MBO-MLP 91.76 90.69 91.46 

Ovarian cancer SC-MBO-CNN 99.6 99.12 97.53 

SC_MBO-KELM 95 94.2 95.05 

SC_MBO-ELM 92.7 90.83 91.58 

SC-MBO-MLP 89 88.42 89.36 

 

A GPU time (in seconds) comparison of KFS-based Optimized CNN and FS-based Basic CNN on five 

high-dimensional cancer datasets. From table 8, it can be seen that the KFS-based SC-MBO CNN model takes 
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more time overall than the FS-based SC-MBO CNN model. Since the specificity, accuracy and sensitivity of 

the KFS-based SC-MBO-CNN approach are higher than other standard machine learning models, it can be 

considered as the best approach for classifying high-dimensional cancer data. 

Tab. 7. A GPU time (in second) comparison of KFS based optimized CNN and FS based basic CNN in five high-dimensional 

cancerous datasets 

 ataset Methods used      ime  in Se   

GSE13159 KFS-SC-MBO-CNN 2.32 

FS-SC-MBO-CNN  2.22 

GSE15061 KFS-SC-MBO-CNN 2.07 

FS-SC-MBO-CNN 1.98 

GSE13204 KFS-SC-MBO-CNN 2.68 

FS-SC-MBO-CNN 2.62 

Breast cancer KFS-SC-MBO-CNN 1.62 

FS-SC-MBO-CNN 1.58 

Ovarian Cancer KFS-SC-MBO-CNN 1.82 

FS-SC-MBO-CNN 1.75 

 

Table 8 shows the SC-MBO optimized hyperparameter values of the CNN on five high-dimensional 

datasets. The hyperparameter values in table 8 are rounded to four decimal places. In GSE13159 dataset, the 

proposed model uses 0.0008 as Learning Rate value, 0.2625 as Dropout 1, 0.2667 as Dropout 2, 100 as Batch 

Size and 4Layers and gives 91.5% accuracy. In GSE15061 dataset, the proposed model uses 0.0009 as 

Learning Rate value, 0.2234 as Dropout 1, 0.2625 as Dropout 2, 50 as Batch Size and 3Layers and gives 

90.22% accuracy. In GSE13204 dataset, the proposed model uses 0.0015 as learning rate value, 0.2667 as 

dropout 1, 0.4233 as dropout 2, 150 as batch size and 4Layers and gives 91.9% accuracy. In breast cancer 

dataset, the proposed model uses 0.0005 as learning rate value, 0.2667 as dropout 1, 0.4367 as dropout 2, 100 

as batch size and 3Layers and yields 97.33% accuracy. In ovarian cancer dataset, the proposed model uses 

0.0013 as learning rate value, 0.1668 as dropout 1, 0.4327 as dropout 2, 250 as batch size and 4 layers and 

gives 99.6% accuracy. 

Tab 8. SC-MBO optimized CNN Hyper-parameters values in 5 datasets 

 atasets  earning rate  ropout 1  ropout 2 Bat h si e  ayer A  % 

GSE13159 .0008 0.2625 0.2667 100 4 91.5 

GSE15061 .0009 0.2234 0.2625 50 3 90.22 

GSE13204 .0015 0.2667 0.4233 150 4 91.9 

Breast cancer .0005 0.2667 0.4367 100 3 97.93 

Ovarian Cancer .0013 0.1668 0.4327 250 4 99.6 

 

In this experimental analysis, Fig. 5. shows the converging frame of the of the Sine Cosine ensemble MBO 

optimized CNN, SineCosine ensemble MBO optimized KELM, SineCosine ensemble MBO optimized ELM, 

and SineCosine ensemble MBO optimized MLP. methods on 5 high-dimensional cancer datasets. These plots 

show how accuracy improved over 100 iterations on five datasets. GSE13159 Accuracy of the data set is 

converging near the 39th, 50th, 64th and 79th iteration in SineCosine ensemble MBO optimized CNN, 

SineCosine ensemble MBO optimized KELM, SineCosine ensemble MBO optimized ELM, and SineCosine 

ensemble MBO optimized MLP methods in Fig. 5(a), respectively. 

The accuracy of the GSE15061 dataset converges near the 48th, 59th, 65th and 80th iteration in the SineCosine 

ensembled MBO optimized CNN, SineCosine ensembled MBO optimized KELM, SineCosine ensembled 

MBO optimized ELM, and SineCosine ensembled MBO optimized MLP methods in Fig. 5(b), respectively. 

The accuracy of the GSE13204 dataset converges at the 54th, 66th, 75th and after the 100th iteration in the 

SineCosine ensembled MBO optimized CNN, SineCosine ensemble MBO optimized KELM, SineCosine 

ensemble MBO optimized ELM, and SineCosine ensemble MBO optimized MLP methods in Fig. 5(c), 

respectively. 
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(a) GSE13159 (b) GSE15061 

  

(c) GSE13204 (d) Breast Cancer 

 

(e) Ovarian Cancer 

Fig. 5. Convergence graph of five high dimensional cancerous datasets 

The accuracy of the breast cancer dataset converges at the 43rd, 56th, 72nd and 78th iteration in the SineCosine 

ensemble MBO optimized CNN, SineCosine ensemble MBO optimized KELM, SineCosine ensemble MBO 

optimized ELM, and SineCosine ensemble MBO optimized MLP methods in Fig. 5(d), respectively. The 

accuracy of the ovarian dataset converges near the 40th, 61st, 67th and 73rd iteration in the sinecosine ensemble 

MBO-optimized CNN, sinecosine ensemble MBO-optimized KELM, sinecosine ensemble MBO-optimized 

ELM, and sinecosine ensemble MBO-optimized MLP methods in Fig. 5(e), respectively. The above 

convergence graphs clearly show that the SC ensemble MBO optimized CNN method converges significantly 

faster than other methods. This accelerated convergence can be achieved by integrating Sine Cosine (SC) into 

the Monarch Butterfly algorithm. 

In addition, figure 6 shows the Receiver Operating Curves (ROC) between the specificity and sensitivity 

values observed from the KFScore-SC-MBO-CNN and FS-SC-MBO-CNN methods on five cancer datasets. 

ROCcurves illustrate the trade-off between true positive rate (TPR) and false positive rate (FPR) at different 

threshold settings, which is useful in high-dimensional data where optimal thresholds are not apparent. 

Based on the results shown in figure 6, it's clear that the proposed ensemble model, KFScore-SC-MBO-

CNN), outperforms other approaches. 
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(a) GSE13159 (b) GSE13204 

  

(c) GSE15061 (d) Breast Cancer 

 

(e) Ovarian Cancer 

Fig. 6. ROC graph of five high dimensional cancerous datasets 

Table 9 presents a clear view that the proposed KFScore based SC-MBO-CNN outperforms in GSE13159 

(91.6% accuracy), GSE13204 (91.9% accuracy) and breast cancer (97.93% accuracy). However, in the Ovarian 

Cancer dataset, the Fisher Score applied WCGWO-Mr based PNN method gives an accuracy of 100%, but the 

KFScore SC-MBO-CNN model gives 99.6% accuracy with a smaller number of extracted significant 

attributes. 
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Tab. 9. A qualitative comparison among the presented ensembled method with other recent methods (The '-' sign indicates 

missing data.) 

Methods  atasets 

 SE1315   SE132 4  SE15 61 Breast Can er  O arian  an er 

Friedman-mrKNN (Kumar 

et al., 2022)  
79.5 (17593) 84.8 (1225) 73.1 (54318) - - 

Friedman-mrPSVM 

(Kumar & Rath, 2015)  
80.4 (6000) - 83.4 (4000) - - 

ReliefF-WCGWO-mrPNN 

(Baliarsingh et al., 2020) 
83.78 (300) 84.28 (300) 65.51 (700) 80.00 (20) 99.2 (200) 

InceptionV3 

(Radhakrishnan et al., 

2024) 

- - - - 97.96 

KW-mrKNN (Kumar et 

al., 2022)  
80.3 (36897) 83.9 (1427) 73.4 (9741) - - 

Decision Tree, (Botlagunta 

et al., 2023) 
- - - 83 - 

Fisher score- WCGWO-

mrPNN (Baliarsingh et al., 

2020) 

87.56 (500) 65.51 (700) 90.07 (300) 88.88 (20) 100 (150) 

Optimized stacking 

ensemble learning (Kumar, 

et al., 2022) 

- - - 99.45 - 

KW-mrPSVM (Kumar & 

Rath, 2015)  
81.0 (15000) - –83.4 (6000) 72.7 (90) - 

ANOVA-mrKNN 

(Baliarsingh et al., 2020) 
80.8 (37016) 83.8 (1423) 71.7 (6786) 72.7 (30) - 

ANOVA-mrPSVM 

(Baliarsingh et al., 2020)  
81.1 (14000) - 84.1 (5000) - - 

KFS-SC-MBO-CNN 91.6 (500) 91.9 (300) 90.22 (150) 97.93 (20) 99.6 (100) 

7. CONCLUSIONS 

In this experimental research work, we have presented an ensemble deep learning approach to deal with 

high-dimensional cancer datasets. The presented model is characterized by the following specific objectives: 

(i) At the outset, the KFScore algorithm is used to select key genomes. A key advantage of using KFS is 

that it removes insignificant genes from the high-dimensional input feature space by transforming the data set 

using a kernel function.  

(ii) In this study, we used the SC ensemble MBO approach to optimize the random variables of the CNN. 

A significant advantage of this algorithm lies in its reduced computational complexity and time. 

Moreover, the presented strategy is evaluated by its accuracy, number of extracted prominent genomes, 

sensitivity, specificity and ROC curve. The effectiveness of the proposed methods is also compared with that 

of other existing models. According to the experimental evaluation, the proposed scheme is reliable, accurate 

and robust. Consequently, the presented approach can be interpreted as a trustworthy basis for the analysis of 

large genomic data. 
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