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A comprehensive review of deepfakes in medical imaging:  

Ethical concerns, detection techniques and future directions 

Abstract 

Deep fakes pose a significant threat to medical imaging. These deep fakes appear very similar to real 

diagnostic scans and are often difficult to distinguish from real medical images. This paper discusses how 

deepfakes are created and highlights their potential for research and education, as well as risks such as 

misdiagnosis and data manipulation. We also review various deepfake detection techniques, ranging from 

traditional image forensics to advanced deep learning models, and highlight the strengths and weaknesses 

of these approaches for detecting sophisticated deepfakes. We also discuss the ethical issues of deepfakes 

in healthcare, such as patient privacy, data security, informed consent, algorithmic bias, and the potential 

loss of trust in medical systems. In addition, we present an experimental study that evaluates how well 

different deep learning models detect deepfakes in a lung CT scan dataset, demonstrating both the potential 

and limitations of current detection methods. Finally, we outline future research directions, including real-

time detection, explicable AI, enhanced cybersecurity, and strengthened ethical guidelines. This review is 

a valuable resource for researchers, clinicians, and policymakers interested in exploring AI medical 

imaging and ethics in the age of deepfakes. 

1. INTRODUCTION 

Deepfakes are artificial images or videos created using advanced AI algorithms. In healthcare, these images 

can mimic real medical images such as X-rays, MRIs, and CT scans (Westerlund, 2019). These images are 

generated using methods such as generative adversarial networks (GANs), variational auto encoders (VAEs), 

and diffusion models (Goodfellow et al., 2020). Although deepfakes can be helpful in research and education 

(Frid-Adar et al., 2018), they pose significant risks. These risks can compromise patient safety, affect 

diagnostic accuracy, and damage trust in the medical system. As deepfake technologies continue to improve, 

it is critical to address the ethical, security, and regulatory issues surrounding them. This review explores the 

relationship between the ethics of deepfake technology and cybersecurity in medical imaging. It also examines 

the gap between the rapid development of deepfake technology and the slow development of protective 

detection methods and regulations (Chen & Esmaeilzadeh, 2024). This gap poses challenges in preventing the 

potential harm of deepfakes. To mitigate these problems, experts in fields such as computer science, medicine, 

ethics, and law must work together. 

This review addresses three key questions: What are the ethical and societal risks of deepfakes in medical 

imaging? How can we improve cybersecurity to protect medical images from deepfakes? What are the best 

deepfake detection methods and how can we standardize their testing? 

The paper begins by explaining the main technologies involved in deepfake creation, including GANs, 

auto-encoders, and other deep learning techniques (Radford et al., 2015). It also discusses how these 

technologies are used in medical imaging. For example, deepfakes can be used for data augmentation when 

training AI models for diagnosis, maintaining patient privacy, and creating realistic simulations for medical 

education and training. These applications have the potential to improve diagnostic accuracy. They can also 

contribute to rare disease research and support personalized medicine (Nie et al., 2017). Despite these benefits, 

deepfakes have raised significant ethical and social concerns. It can lead to privacy violations and data 
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breaches. There is also the potential for misuse, including identity theft and fraud. Manipulation of medical 

images can also compromise diagnosis and patient safety (Finlayson et al., 2019). This can lead to misdiagnosis 

or incorrect treatment. In addition, the use of patient data to create deepfakes requires careful consideration of 

informed consent (Vayena et al., 2018). Patients need to understand how their data will be used and be aware 

of the potential consequences of deepfake technology. Deepfakes can also introduce bias into medical imaging 

models, leading to unfair or inequitable outcomes. As awareness of deepfakes increases, the public may begin 

to distrust medical images and healthcare institutions. This underscores the need for systems that can 

authenticate medical images and ensure their transparency. 

This review also considers the evolving legal and regulatory landscape surrounding deepfakes in medical 

imaging. This includes an examination of existing laws related to privacy and medical malpractice, and the 

identification of gaps that need to be addressed by new regulations (Cochran & Napshin, 2021). A major focus 

will be on methods for detecting deep forgeries. These methods include traditional image forensics that look 

for inconsistencies in the image, deep learning-based detection methods that use convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), and metadata analysis with blockchain for provenance tracking 

(Hsu et al., 2020). Figure 1 shows the conceptual framework of deepfake technology and its impact on medical 

imaging. 

This paper explores possible future directions in the field. These include advances in detection techniques, 

such as the use of descriptive AI to improve transparency and multimodal analysis that combines image data 

with patient information (Xie et al., 2017). Improving cybersecurity measures is essential to create secure 

image storage systems and tamper-proof medical images. Establishing clear ethical guidelines and legal 

frameworks for the use of deepfakes, including patient consent procedures, is essential. The review also 

considers how deepfakes could be used positively in medical imaging, for example in personalized medicine 

or medical education. By addressing these challenges, the review aims to provide a clear understanding of the 

safe and responsible use of deepfake technology in medical imaging. This will guide future research and 

innovation, while ensuring that deepfake technology helps protect patient safety, maintain accurate diagnoses, 

and build public trust in healthcare. 

 

Fig. 1. Conceptual framework of deepfake technology and its impact on medical imaging 

The rest of this paper is organized as follows. Section 2 provides a background on deepfake technology. It 

also discusses its history and core principles. Section 3 reviews the methods for creating and detecting 

deepfakes. It focuses on advanced algorithms and techniques. Section 4 presents the experimental results. This 

section outlines the objectives, methods, results, and discussion of the results. Section 5 examines the 

challenges of detecting and preventing deepfakes in medical imaging. Section 6 provides policy 

recommendations to address these challenges. Section 7 identifies research gaps and suggests future directions 
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for improving detection and prevention. Finally, Section 8 concludes the paper with key takeaways and 

implications for the safe use of deepfake technology in healthcare. 

2. BACKGROUND 

Deep learning has transformed medical image analysis. This has enabled automated diagnosis, treatment 

planning, and drug discovery (Shen et al., 2017). These models can extract complex features from medical 

images, which has led to significant advances in clinical applications (Litjens et al., 2017). However, deep 

learning has also brought new challenges, particularly with the rise of deepfakes. In medical imaging, 

deepfakes use deep learning technologies, specifically Generative Adversarial Networks (GANs), to 

manipulate or create synthetic medical images. These images look real but are artificial and may represent 

medical conditions or anatomical structures. This raises unique challenges and ethical concerns that are not 

present in traditional image manipulation. Figure 2 presents a timeline illustrating the evolution of deepfake 

technology and its integration into medical imaging. This section examines how deep learning and deepfakes 

intersect in medical imaging. 

 

Fig. 2. Timeline showing the evolution of deepfake technology and its integration into medical imaging 

Deep learning models, especially convolutional neural networks (CNNs), are useful for processing and 

understanding visual data. This makes them ideal for medical image analysis. CNNs have a layered structure 

that allows them to learn detailed image features. These range from simple edges and textures to complex 

anatomical structures. This has led to impressive advances in tasks such as image classification, segmentation, 

and object detection. The development of GANs has marked a significant step forward in deep learning 

research. GANs consist of two parts: a generator that creates fake data and a discriminator that tries to 

distinguish between real and fake data. Through adversarial training, GANs can generate realistic synthetic 

images, including medical images. GAN variants such as CycleGANs can learn to map between different 

image types. For example, they can convert MRI images into CT scans (Zhu et al., 2017). Another variant, 

StyleGANs, allows more control over the features of the generated images, further improving the quality of 

deepfakes in medical imaging (Karras et al., 2019). In addition to GANs, autoencoders, especially variational 

autoencoders (VAEs), are another powerful tool. Auto-encoders compress and reconstruct the data. They can 

also be used for tasks such as image denoising and anomaly detection. These advances in deep learning have 

made it easier to create deep fakes in medical imaging. Tab. 1 summarizes the state-of-the-art detection 

algorithms used in medical imaging. It highlights the methods, datasets, and contributions. This provides a 

clear overview of recent advances in medical image forgery detection. The ability to create and manipulate 

medical images using deep learning has opened up new opportunities in both research and clinical practice. 
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Tab. 1. Summary of the state-of-the-art detection algorithms used in medical imaging 

Authors Methodology Datasets  Contributions 

Mirsky et al., 

2019 

CT-GAN: Malicious 

tampering using 

GANs 

Private 3D CT 

scans 

Demonstrated the feasibility of injecting and 

removing tumors in 3D CT scans using GANs. 

Highlight risks associated with clinical and insurance 

fraud. 

Reichman et 

al., 2021 

Deep learning-based 

framework, 

ConnectionNet  

LuNoTim-CT 

Dataset 

Proposed the ConnectionNet model for detecting 

manipulated regions in medical images. 

Kim et al., 

2022 

Sparse CNN with U-

Net 

Ocular Disease 

dataset 

Developed a deepfake detection algorithm for 

medical data manipulation in eye disease images. 

Budhiraja et 

al., 2022 

Medical deepfake 

detection using 

convolutional 

reservoir networks 

Private dataset 

Introduced convolutional reservoir networks to 

detect deepfakes in medical images and applied them 

to CT and X-ray modalities. 

Alheeti et al., 

2022 

Intelligent detection 

method for malicious 

tampering of cancer 

imagery 

3D Public CT-

GAN Dataset 

Focused on detecting manipulations in cancer 

images using deep learning techniques. 

Sharafudeen 

& Vinod 

Chandra, 

2023 

3D Convolutional 

Neural Networks 

3D Public CT-

GAN Dataset 

Highlighting the effectiveness of 3D deep learning 

architecture in detecting medical deepfakes. 

Karaköse et 

al., 2024 

YOLOv5 and 

YOLOv8 

Comparative Analysis 

Private dataset of 

lung CT,  X-rays 

YOLOv5 outperformed YOLOv8 with faster 

training and higher recall. Demonstrated robustness 

in detecting manipulated lung CT and osteoarthritis 

x-ray images. 

S & Narayan, 

2024 

LBP preprocessing, 

U-Net, SVM 

Classifier 

LIDC-IDRI 

dataset, CT-GAN 

dataset 

Developed a robust framework for detecting 

manipulated medical images by integrating multiple 

detection techniques. 

Zhang et al., 

2024 

Two-stage cascade 

framework (local 

detection + global 

classification) 

CT scans with 

injected/removed 

lung cancer lesions 

Proposed a method that achieves excellent 

performance in detecting small region forgeries in 

CT images generated by CT-GAN. 

Latif et al., 

2024 
Modified CNN 

3D Public CT 

dataset 

Implemented AlexNet using transfer learning to 

detect manipulated 3D medical images. 

 

An important application of this method is data augmentation. Deepfakes can be used to create synthetic 

medical images that can increase the size of training datasets. This is especially helpful for rare diseases or 

conditions where it is difficult to collect large amounts of real patient data. This can improve the performance 

and robustness of AI models used for diagnosis and segmentation (Shorten & Khoshgoftaar, 2019). Another 

important application is anonymization. Deepfakes can replace identifiable features in medical images with 

synthetic features, protecting patient privacy. This makes it easier to share and analyze medical data while 

complying with privacy laws such as the Health Insurance Portability and Accountability Act (HIPAA) and 

the General Data Protection Regulation (GDPR) (Kaissis et al., 2020). 

Deep fakes can also be used in medical simulations. This helps medical professionals practice complex 

procedures and diagnose rare cases in a safe environment. Deepfake technology can benefit several medical 

fields, including surgery and radiology, where visual interpretation and decision-making are critical (Mccormic 

et al., 2022). However, the use of deepfakes in medical imaging raises several ethical and societal concerns 

that need to be carefully considered. A major concern is privacy and data security. For example, synthetic 

medical images can be misused. Malicious actors could create fake images to make false medical claims, 

commit identity theft, or blackmail patients (Mirsky et al., 2019). Another concern is the potential impact on 

diagnostic integrity and patient safety. If deepfakes are used to subtly alter medical images, they could lead to 

misdiagnosis or incorrect treatment. This can have serious consequences for patient health and safety. The 

issue of obtaining informed consent must also be addressed. If patient data is used to create deepfakes, patients 

must be informed of how their data will be used. Clear guidelines should be established to ensure that consent 

is obtained ethically and transparently. This ensures patient autonomy and helps build trust in the medical 
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system. There is also the issue of bias and fairness in deep learning models. These models reflect the biases in 

the training data. If the data used to train a model is biased, the model may not work equally well for all 

demographic groups. In medical imaging, this can lead to inequitable access to quality care. Addressing these 

biases through careful data selection and ongoing evaluation is necessary to ensure fairness in deepfake 

applications (Mehrabi et al., 2022). The legal and regulatory landscape for deepfakes in medical imaging is 

still evolving. Existing privacy laws, such as HIPAA and GDPR, and medical malpractice laws may not fully 

address the challenges posed by deepfake technology. New legal frameworks are needed to address issues such 

as liability for misdiagnosis caused by fake images. 

It is also important to establish standards for synthetic medical data and address intellectual property rights 

related to AI-generated images. Legal guidelines must also ensure the ethical use of patient data for deepfake 

research. Several studies have investigated deepfake techniques in medical imaging. Mirsky et al. (2019) used 

deep learning to show how CT scans could be vulnerable to tampering. They demonstrated how deep fakes 

could add or remove cancerous lesions in medical images. This raises concerns about the security of medical 

imaging systems. (Motamed et al., 2021) investigated how GANs can generate synthetic medical images for 

data augmentation. Their research showed that deepfakes could improve AI diagnostic tools, especially for 

rare diseases. However, they also emphasized the importance of validating synthetic datasets to avoid potential 

biases or errors. 

The ethical and legal challenges associated with deepfakes have been widely discussed. Various 

frameworks have been proposed to address these issues. Some of these frameworks provide specific 

recommendations for medical imaging. Some researchers have explored the use of blockchain to securely track 

and authenticate medical images (Salah et al., 2019). Others have explored how explainable AI (XAI) can be 

used to improve transparency in deepfake detection systems (Tjoa & Guan, 2020). 

3. TECHNIQUES FOR GENERATING AND DETECTING DEEPFAKES 

Deepfakes have potential benefits in medical imaging but reliable detection of manipulated images is 

crucial. This section explores the techniques for creating and detecting deepfakes. Fig. 3 shows a taxonomy of 

deepfake generation and detection techniques and provides a clear overview of the methods. It also highlights 

the ongoing challenge of staying ahead of deepfake technology and the need for highly adaptable detection 

methods. 

 

Fig. 3. Taxonomy of deepfake generation and detection techniques 
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3.1. Generation techniques 

Deep learning is central to creating deepfake medical images. Generative Adversarial Networks (GANs) 

are especially important. Different GAN architectures have unique strengths and weaknesses. They are used 

in various medical imaging applications. Tab. 2 summarizes the advantages and limitations of several key 

GAN models. These include Pix2Pix GAN, CycleGAN, StyleGAN, StarGAN and Progressive GAN. Fig. 4 

shows real and GAN-generated CT scans. Autoencoders are also used for deepfake generation. They can 

reconstruct and manipulate images. The following subsections explore these techniques in detail. Specific 

applications and ethical implications are also discussed. 

    

(a) (b) (c) (d) 

Fig. 4. Real vs. GAN-Generated CT Scans. (a), (b) Real CT scans (Chen P, 2018).  

(c), (d) GAN-generated synthetic CT scans (Prezja et al., 2022).  

The high level of realism achieved by GANs poses significant challenges for current detection algorithms 

Tab. 2. Summary of state-of-the-art generation techniques used in medical imaging 

Techniques Description 
Applications in medical 

imaging 
Advantages Limitations 

GANs 

GANs have two nets, a 

generator that creates 

images and a 

discriminator that checks 

if they look real. 

- Create fake MRI, CT, 

and X-ray images for 

training data. 

- Simulate rare diseases 

for learning. 

- Produces high-quality 

images. 

- Works with many types 

of medical images. 

- Training can be 

unstable. 

- Requires large data sets. 

Pix2Pix GAN 

Pix2Pix GAN is a type of 

GAN that works with 

paired data to translate 

one image into another. 

- Translate MRI scans to 

CT scans and vice versa. 

- Segmenting body parts 

for medical analysis. 

-Produces accurate 

translations with paired 

data. 

- Requires paired data 

sets, which can be 

difficult to obtain. 

- Less flexible when 

working with unpaired 

data. 

CycleGAN 

CycleGAN works like 

Pix2Pix but without the 

need for paired data. 

- Convert MRI scans to 

CT scans. 

- Improve image quality. 

- Simulate treatment 

outcomes. 

- Can use unpaired data, 

making it more flexible. 

- May produce artifacts 

that degrade image 

quality. 

- May not capture small 

details needed for 

diagnosis. 

StyleGAN 

StyleGAN creates images 

with control over details 

such as lighting and 

texture. 

- Create varied synthetic 

medical images. 

- Enhance features for 

training purposes.  

- Creates detailed and 

realistic images. 

- Requires a lot of 

computing power. 

- Complex design that 

requires expertise. 

StarGAN 

StarGAN is a model that 

works with multiple 

types of images in one. 

- Convert MRI, CT, and 

X-ray images with a 

single model. 

- Enhance multiple 

features in an image. 

- Efficient by using one 

model for multiple tasks. 

- Scalable for various 

medical imaging tasks. 

- Training is complex for 

multiple image types. 

- Some transformations 

may degrade quality. 

Progressive 

GAN 

Progressive GANs 

systematically generate 

images, starting with low 

resolution and adding 

detail over time. 

- Create high-resolution 

medical images. 

- Simulate detailed body 

structures. 

- Training is more stable. 

- Produces high-

resolution images with 

fine detail. 

- Requires a lot of 

processing power. 

- Takes more time to 

train. 

Autoencoders 

Autoencoders are used to 

compress and recover 

data. 

- Create anonymous 

patient images.  

- Identify problems by 

comparing real images to 

recreated images. 

- Reduces data size. 

- Produces various 

synthetic images. 

- Images may not be as 

sharp as GANs. 

- Limited control over 

image detail. 
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Fig. 5. Flowchart for illustrating the steps involved in generating deepfake medical images 

3.2. Detection techniques 

Deepfake detection is critical to patient safety and trust in healthcare. Medical images should be authentic 

and unaltered. This section examines several deepfake detection techniques. Some of these methods use 

markers for authentication. Others have analyzed images for signs of tampering. More advanced methods have 

used machine learning and deep learning. Emerging technologies such as blockchain and quantum computing 

are also being explored. Tab. 3 summarizes these techniques and highlights their strengths and weaknesses. 

Because each method has limitations, a multi-pronged approach is needed for robust deepfake detection in 

medical imaging. 

Tab. 3. Summary of state-of-the-art detection techniques used in medical imaging 

Techniques Description Advantages Limitations 

Active 

Detection 

Methods 

Embed unique markers such as 

watermarks or digital signatures into 

images during creation for later 

authentication. 

- Real-time verification 

- Easy to implement. 

- Can be modified by attackers. 

- Adds additional data. 

Passive 

Detection 

Methods 

Analyzes features in images such as 

pixel patterns or noise levels to detect 

manipulation without adding markers. 

- No changes to image creation 

required. 

- Detects many manipulations. 

- Requires complex analysis. 

- High processing power. 

- Effectiveness depends on image 

quality. 

Machine 

Learning 

Models 

Uses algorithms such as CNNs and 

RNNs to detect patterns of 

manipulation in medical images. 

- High accuracy with large data sets. 

- Can detect subtle changes. 

- Can improve with more data. 

- Requires large data sets 

- Vulnerable to attacks  

- Takes a lot of computing resources. 

Deep 

Learning 

Models 

Uses advanced neural networks to 

detect deep fakes by capturing 

complex features in images. 

- High performance for complex tasks. 

- Adaptable to different 

manipulations. 

- Requires high resources  

- Difficult to interpret decisions. 

- Requires expert development. 

Blockchain-

Based 

Verification 

Uses blockchain to create secure 

records of medical images and ensure 

they are not tampered with. 

- Tamper proof. 

- Increases transparency. 

- Enables secure sharing. 

- Difficult to integrate with systems. 

- Scalability issues. 

- Requires widespread adoption. 

Quantum 

Computing 

Approaches 

Uses quantum algorithms to accelerate 

and improve deepfake detection by 

analyzing data faster. 

- High processing speed. 

- Handles large amounts of data well.  

- Can find complex patterns. 

- Still in early stages, expensive. 

- Needs more development for real-

world use. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

The main goal of this experiment was to test how well different deep learning models can detect deepfakes 

in medical images. The study focused on models such as ResNet-50, EfficientNet-B0, DenseNet-121, VGG16, 

InceptionV3, and Vision Transformers (ViT) to see how they identify altered medical images. It also aimed to 

understand the strengths and weaknesses of each model and provide insights for improving deepfake detection 

in medical domains. 

This study used the CT-GAN dataset (Mirsky et al., 2019), which is a well-known benchmark for deepfake 

detection in medical images, specifically lung CT scans. The dataset included four categories: True Benign 

(TB), True Malignant (TM), False Benign (FB), and False Malignant (FM). TB and TM images contain 

original CT scans that may or may not contain cancerous areas. These are considered true images for 

classification. FB and FM contain manipulated images where FB shows benign conditions with tumors 

removed and FM adds fake tumors to simulate malignant conditions. These are considered fake images for 

this experiment. Figure 6 shows examples of real and fake images from this dataset. 

    

(e) (f) (g) (h) 

Fig. 6. Samples of CT images from CT GAN dataset True benign (e),  

True malignant (f), tumor removed using GAN (g), and tumor injected using GAN (h) 

All CT scans were in DICOM format, which contains important metadata used in medical imaging. To 

make the images compatible with deep learning models that work better with JPEG images, the DICOM files 

were converted to JPEG. This conversion kept the image resolution and quality high to avoid losing important 

details, although some metadata and image quality were slightly degraded. 

 

Fig. 7. Illustration of rotation and brightness-based data augmentation on CT-GAN dataset 

To address the class imbalance in the dataset, data augmentation was applied. The dataset initially contained 

fewer fake images than real images. Data augmentation was applied only to the fake images. Eight data 

enhancements were applied to each fake image. These augmentations included rotations and brightness 

adjustments. The rotations included angles of ±5° and ±10°. This created four variations per image by rotation. 

Brightness adjustments included changes of ±10% and ±25%. This resulted in four brightness variations per 

image. Combining these enhancements creates eight different variations for each fake image. (Figure 7). This 

specific augmentation strategy directly addresses the class imbalance and increases the number of fake images 

in the dataset. These methods were chosen to improve the generalizability of the model without distorting the 

medical images. 
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The following preprocessing steps were applied to all images. First, the images were resized using bilinear 

interpolation. Images were resized to a uniform size of 224 × 224 pixels. This ensured consistency across the 

datasets. Center cropping was then performed. The images were center cropped to a size of 224x224 pixels. 

Pixel intensity normalization was also performed to standardize the data and improve model training. Tab. 4 

shows the distribution of samples across the training, validation, and test sets. 

Tab. 4. Number of samples in the dataset splitting strategy 

Split Real images Fake images Total 

Train 1754 600 2354 

Val 379 129 508 

Test 379 126 505 

Total 2512 855 3367 

 

Google Colab Pro, which provides powerful computing resources, was used to train and evaluate the 

models. An NVIDIA L4 GPU with 24 GB of memory was used to speed up training and testing. The system 

also used CUDA 12.2 and cuDNN 8.9 for parallel processing. The models were developed in Python 3.8.8 

using the PyTorch framework to ensure a stable platform for the experiments. Tab. 5 lists the hyperparameters 

and values used during training. 

Tab. 5. Hyperparameters and corresponding values 

Hyperparameters Value 

Learning Rate 0.001 

Batch Size 64 

Optimizer Adam 

Epochs 50 

Weight Decay 0.0001 

Dropout Rate 0.5 

Activation Function ReLU 

Loss Function Weighted Cross-Entropy 

 

To evaluate the performance of the models, metrics such as accuracy, precision, recall, F1 score, confusion 

matrices, and confidence scores were used. The results of the experiments show the advantages and 

disadvantages of different deep learning models for deepfake detection in medical images. The performance 

metrics (Table 6) show that all models - ResNet-50 EfficientNet-B0 DenseNet-121 VGG16 InceptionV3 and 

Vision Transformers - performed well with high accuracy, precision, recall and F1 scores in distinguishing 

between real and fake lung CT scans. 

InceptionV3 performed best with near perfect accuracy and F1 score. VGG16 ResNet-50 and DenseNet-

121 also performed well, with accuracy and precision above 99% for the best models. These results suggest 

that classical convolutional neural networks (CNNs), originally designed for image classification, can be 

adapted to detect deepfake manipulations in medical images. 

ViT and EfficientNet-B0 performed well, but showed lower results compared to the top CNN models. ViT, 

in particular, showed that while transformer-based models are successful in many computer vision tasks, they 

may need more adjustment or fine-tuning to work better for deep-fake detection in medical imaging. Factors 

such as small dataset size and subtle changes in the fake images may have affected the performance of these 

models. 

Tab. 6. Performance metrics of deep learning models on the CT-GAN dataset for medical image deepfake detection 

Models Accuracy Precision Recall F1 score 

Resnet 50 99.60 99.61 99.59 99.59 

Efficientnet b0 96.44 96.60 96.44 96.34 

VGG16 99.60 99.61 99.60 99.60 

InceptionV3 99.80 99.78 99.80 99.79 

DenseNet-121 99.01 99.05 99.01 99.02 

Vision Transformers 

(ViT) 

97.43 97.43 97.42 97.40 
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The confusion matrices (Figure 8) also show that certain models, such as EfficientNet-B0 and ViT, had a 

slightly higher rate of misclassifying fake images as real. This shows how difficult it is to detect subtle changes 

in medical images. 

 

Fig. 8. Confusion matrix-based comparative analysis of deep learning models  

on the CT-GAN dataset for medical deepfake detection 

The distributions of confidence scores (Figure 9) illustrate the challenges of deepfake detection. Most 

models produced high confidence scores for real images, indicating a high level of confidence in their 

authenticity. 

 

Fig. 9. Confidence score distribution for real and fake classes across different models.  

The plots (from top left to bottom right) represent the models in the following order:  

ResNet-50, EfficientNet-B0, VGG16, InceptionV3, DenseNet-121, and Vision Transformer (ViT) 

For the fake images, however, the confidence scores varied more significantly. The best models achieved 

high confidence scores for the fake images. This indicated a clear ability to discriminate between real and fake 

images under optimal conditions. However, models with lower performance showed a wider distribution of 

confidence scores for fake images. This score distribution suggests greater uncertainty in deep fake detection 
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for these models and highlights a key limitation of the dataset. The CT-GAN dataset had fewer fake images 

than real images. This imbalance and the limited diversity of the dataset can adversely affect model 

performance. Models may not generalize well to new deep fakes.  Although deep learning models are good at 

detecting real images, it is difficult to detect subtle deep fakes. In this study, only the CT-GAN dataset was 

used due to the lack of publicly available deepfake datasets. The lack of diverse datasets is a major challenge 

in medical deepfake detection research. 

It is important to recognize the limitations of this experimental study. This study provides a definitive 

assessment of whether an image has been manipulated; however, it does not determine the specific location of 

the manipulation. Determining the exact location of the manipulation requires further research and model 

development. These limitations suggest that while deep learning models can effectively classify manipulated 

images, further development is needed to improve their ability to detect and localize changes. 

These results have important implications for clinical practice. The high accuracy of the best models 

suggests that deep learning-based tools can be used in medical imaging systems to flag suspicious images and 

help physicians maintain diagnostic accuracy. However, not all models perform equally well, so careful model 

selection and validation are important. 

5. CHALLENGES IN DETECTING AND PREVENTING DEEPFAKES IN MEDICAL IMAGING 

Detecting and preventing deepfakes in medical imaging is challenging. A key challenge is the rapid 

evolution of deepfake technology (Cheng, 2024). This makes detection very difficult. The lack of standardized 

data sets makes it difficult to develop reliable methods. There are also many ethical and legal concerns about 

privacy, data security, bias, and accountability. Tab. 7 provides more details about these challenges. It also 

lists implications and potential solutions. 

Tab. 7. Challenges in detecting and preventing deepfakes in medical imaging 

Challenge Description Implications Solutions 

Rapid 

Advancement of 

Deepfake 

Technology 

Generative models such as 

GANs and StyleGAN are 

improving and making it harder 

to identify fake medical images. 

- Fake images are harder to 

detect. 

- Increased risk of 

misdiagnosis and harm. 

- Build systems that adapt to new deepfake 

models. 

- Use advanced tools to catch small errors. 

Lack of 

Standardized 

Datasets 

There are not enough datasets of 

real and fake medical images for 

training. 

- Difficult to train and 

improve detection models. 

- Difficult to reproduce 

research results. 

- Collaborate with hospitals and medical 

institutions to create shared datasets. 

- Ensure that datasets include all types of 

medical images (MRI, CT, and X-ray). 

Ethical and Legal 

Issues 

Concerns about patient privacy, 

data security, algorithmic bias, 

and legal liability when using 

deepfake detection systems. 

- Risk of data breaches and 

misuse 

- Bias in AI models can lead 

to unfair healthcare 

outcomes. 

- Establish clear ethical rules and legal 

standards for AI in medical imaging. 

- Use synthetic or anonymized data to protect 

privacy. 

Algorithmic Bias 

and Fairness 

AI systems can be biased by 

unbalanced training data. 

- Unfair diagnostic results. 

- Loss of trust in AI tools. 

- Train models on diverse data sets 

representing all groups. 

- Be transparent about model training and 

evaluation. 

Legal 

Responsibility and 

Accountability 

Uncertainty about who is 

responsible when AI systems 

fail. 

- Fear of legal repercussions 

makes hospitals reluctant to 

use AI tools. 

- Establish clear legal rules of responsibility 

and accountability. 

- Promote transparency in the use of AI 

systems. 

Integration into 

Clinical 

Workflows 

Detection systems may be too 

slow or complex to use in daily 

clinical practice. 

- Disrupts clinical operations.  

- Delays patient care. 

- Enhance detection systems to be faster and 

more efficient. 

- Leverage a robust infrastructure to support 

real-time processing. 

Privacy Concerns 

and Data Security 

Using large amounts of sensitive 

medical data to train deepfake 

detection models can create 

privacy risks. 

- Risk of data breaches and 

privacy violations. 

- Loss of confidence in 

healthcare systems. 

- Use strong encryption and data backup. 

- Ensure compliance with privacy laws 

through regular audits. 
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6. POLICY RECOMMENDATIONS TO ADDRESS DEEPFAKES IN MEDICAL IMAGING 

Deepfakes are a growing problem in medical imaging. Explicit policies are needed to manage their impact. 

To protect medical data, these policies should emphasize strict regulations, collaboration, ethical use of AI, 

and cybersecurity. 

Clear regulations are critical to addressing the challenges of deepfakes in healthcare. International 

cooperation is essential to create a global exchange of digital medical information. Organizations such as the 

WHO(World Health Organization ) and the ITU(International Telecommunication Union ) should make efforts 

to develop universal standards and guidelines (Łabuz, 2023). These guidelines should define acceptable use 

and outline penalties for misuse. Collaboration between AI experts and medical professionals is important to 

ensure ethical and effective implementation. GDPR provides a useful framework for data protection and 

privacy. Its principles can be adapted to address the risks of deepfakes. National regulations need to be updated 

to address issues such as liability for misdiagnosis, standards of proof, and intellectual property concerns. 

Regulatory agencies, such as the FDA, need to update their guidelines to incorporate AI-powered tools. This 

will ensure the safe and responsible use of deepfakes in medical imaging. 

Deepfakes pose significant challenges that require a collaborative effort to solve. Stakeholders must work 

together, including technology companies, medical institutions, researchers, policymakers, and patient 

advocates. Public-private partnerships can accelerate the development of detection tools and improve data 

security. Joint projects can explore innovative solutions, such as the use of blockchain for secure provenance 

tracking. Data sharing plays an important role in improving detection accuracy by providing access to larger 

and more diverse data sets. Therefore, strict privacy regulations must be enforced to protect sensitive medical 

information. Organizations such as HL7 can update data exchange standards and promote interoperability to 

ensure seamless and secure information exchange. 

Ethical considerations are essential to the use of AI in medical imaging. Therefore, AI systems must be 

developed and used responsibly. This includes transparency and accountability. Deepfake detection models 

should be easy to understand. Informed consent was necessary when collecting patient data. It is also important 

to address potential biases in the algorithms. Independent audits can help ensure that ethical standards are met. 

Professional organizations such as RSNA and ACR should work together to create ethical guidelines and 

certification programs.Implement these programs to promote responsible use and accountability. 

Medical imaging systems are sensitive and must be well protected. Robust cybersecurity is essential to 

combat tampering and misuse. This requires enhanced data security measures, secure image storage and 

transmission mechanisms. Tamper-proof authentication methods are critical to protecting data. Research and 

development should focus on securing the digital infrastructure. Technologies such as blockchain and 

watermarking can improve data integrity and traceability. Security audits should be conducted regularly to 

identify vulnerabilities and improve security. 

7. RESEARCH GAPS AND FUTURE DIRECTIONS 

Several key research gaps hinder the safe and effective use of deepfakes in medical imaging. However, 

these gaps must be addressed. Future research directions should be explored. These steps are outlined below. 

Current detection models lack access to diverse medical image datasets that include both real and fake 

images. Future research should focus on creating datasets that cover many medical conditions and imaging 

types (Seow et al., 2022). These datasets should include diverse patient populations to improve model 

performance. Collaboration with hospitals is needed to collect these images while respecting privacy laws. 

Solving the challenge of deepfakes requires expertise from AI, cybersecurity, and ethics. Combining 

knowledge from these fields will help create more secure and ethical detection systems (Malatji & Tolah, 

2024). Future studies should combine AI experts, cybersecurity experts, and ethicists to develop holistic 

solutions. 

Current detection methods are often too slow for clinical use. Research should focus on creating lightweight 

models that can analyze images in real time without sacrificing accuracy. This would help integrate detection 

systems into healthcare workflows and enable rapid verification of medical images (Javed et al., 2024). 

Many current models focus on image artifacts without considering the clinical context. Adding patient 

history and diagnostic data can improve the accuracy of deepfake detection. Context-aware models are better 

at identifying inconsistencies that are consistent or inconsistent with expected clinical scenarios. 



151 

Adding explicable AI to deepfake detection models can clarify their decision-making processes. Future 

research should explore methods to make AI models more understandable to clinicians. This will aid in the 

acceptance and validation of these tools in medical practice (Tsigos et al., 2024). 

Addressing these gaps will help advance the use of deepfake technology in medical imaging in a safer, 

more ethical, and more effective manner. This will lead to better patient care and increased confidence in the 

healthcare system. 

8. CONCLUSIONS 

This review examines the role of deepfakes in medical imaging, highlighting their potential and challenges. 

The rapid growth of deepfake technology requires continuous improvements in detection methods. Deepfakes 

raise important ethical concerns in healthcare, such as risks to patient privacy, diagnostic accuracy, and public 

trust. Strong ethical guidelines and regulations are essential for the responsible use of deepfakes in medical 

imaging.  Future studies should generate large and diverse ethically sourced datasets for training and testing 

deepfake detection systems. These datasets are critical for improving the accuracy and reliability of detection 

tools. It is also important to develop explainable real-time detection tools that can be easily integrated into 

clinical workflows. 

Beyond detection, deepfakes have the potential to improve personalized medicine and medical education. 

They can be used to generate synthetic patient data for AI training, simulate rare diseases for education, and 

create personalized models for surgical planning. However, these applications require careful consideration of 

ethical issues and risks. A collaborative approach involving clinicians, researchers, ethicists, policymakers, 

and technologists is critical to developing ethical and effective AI systems in healthcare. This collaboration 

will ensure that deepfakes are used responsibly in healthcare, while protecting ethical standards, patient trust 

and safety. 
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